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Abstract: We present a model to generate noise-induced insect movements in a large swarm that are similar to those
observed in real-world trajectories. Our approach is based on pre-recorded insect trajectories. After presenting a novel
evaluation metric and a statistical validation approach that takes into account various characteristics insect motions, we
evaluate well-known noise functions. Finally, we combine Curl noise function with a dynamics model to generate realistic
swarm simulations and emergent behaviors of flying insects. We demonstrate their performance on simulating large
swarms.
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1. INTRODUCTION

Collective biological behaviors are frequently ob-
served in the real world, such as in the coordinated behav-
ior of large groups of similar animals. Local interactions
among the individuals in a group give rise to emergent
behaviors or patterns. Such behaviors and interactions
have previously been extensively studied in biology, con-
trol theory, swarm intelligence, and related areas.

In this paper, we address the problem of accurately
simulating the collective behaviors and trajectories of
swarms of flying insects. It is generally thought that these
behaviors or patterns can be explained using simple in-
teraction rules [1] and inherent noise; the latter concept
refers to the random movements of the insects in a swarm
[2-4], which can help the insects maintain swarm align-
ment. Moreover, certain continuum approaches (e.g. the
Vicsek model) assume that each insect in a group follows
the trajectory of neighboring individuals and that the de-
viations in their trajectories can be modeled as noise [5].

There are several sources for this noise. At a broad
level, they can be classified into intrinsic and extrinsic
noises. The intrinsic noise refers to the decision mecha-
nism through which the insects update their positions [2].
On the other hand, the extrinsic noise refers to the effects
of the environment [6]. One of the major challenges is
to derive a computational model of the inherent noise in
terms of simulating the motion of a large swarm of fly-
ing insects. Recent developments in computer vision and
capturing technologies have made it possible to track the
dynamic motions of insects [7, 8]. Such datasets can help
us analyze specific swarm phenomena as well as calibrate
and evaluate different simulation models [9]. Given in-
sects’ small size, it is rather difficult to acquire accurate
ground-truth motion trajectories [8]. As a result, we need
to develop appropriate probabilistic techniques to model
noise – in addition to evaluation metrics to compare the
results with captured insect data.
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Main Result: We present a data-driven noise model
that can be used to generate noise-induced movements
that are similar to those observed in real-world trajectory
datasets. The main idea is to utilize pre-recorded insect
trajectories to derive a general noise model and compute
the appropriate parameters for different species. Our ap-
proach employs a statistical formulation that inherently
accounts for noise in the dynamics model to compute
the trajectory of each insect in a swarm. Furthermore,
we use seven time-varying metrics to evaluate the col-
lective behaviors of insects and compute the optimal pa-
rameters using a genetic algorithm. We observe that the
Curl noise [10] can be combined with a dynamics model
and used to simulate many emergent behaviors, includ-
ing locust migrations, aggregations at different scales,
competition for mates, phase transition in terms of den-
sity passing a critical point, positive phototaxis, and es-
cape responses to predator-like objects. The combined
dynamics and noise model can be used to simulate very
large swarms with thousands of insects and to handle high
swarm densities.

The rest of the paper is organized as follows. We
briefly survey the prior research in Section 2. We present
our data-driven noise and evaluation model in Section 3.
We analyze different noise models in Section 4 and use
them to generate different collective behaviors.

2. PRIOR WORK

In this section, we give a brief overview of aggrega-
tion behavior models, noise functions used in dynamical
models and validation method for multi-agent models.

2.1. Aggregation Behavior Models
There is substantial scientific literature on aggregation

behaviors of animal groups, and many force-based multi-
agent models have been proposed [11, 12]. These mod-
els can be divided into two categories: continuum ap-
proach models and discrete approach models. Most con-
tinuum approaches are based on partial differential equa-



tion [13-15]. Discrete approach is more common than the
continuum approach [16] and includes rule-based model
and mathematical model. In rule-based models, individ-
ual agents apply particular rules to achieve global behav-
iors [17]. Mathematical models explore collective be-
havior in a more general manner [18]. In these types
of models, individuals interact with one another based
on perception forces [19], and these forces include short-
range repulsion and long-range attraction [20]. In addi-
tion, some models also consider medium-range orienta-
tion [1].

2.2. Noise Functions
Noise is a constructive force at the collective level

in an insect swarm [4]. In multi-agent models, noise
mainly includes white noise and Gaussian white noise,
and its variants. White noise obeys a uniform distribu-
tion, and self-propelled particle (SPP) [2] adopts this kind
of noise. Gaussian white noise is the noise that obeys a
Gaussian (or normal) distribution, this noise function is
used in most of the Brownian dynamics models [21, 22],
Esciderp et al. [23] also use this noise. Meanwhile, the
manner in which the noise is introduced into the system
will affect the simulation results [24]. Aldana et al. [25]
consider intrinsic noise and extrinsic noise based on Vic-
sek’s model [2], but both types of noise are white noise.
Gönci et al. [26] use a scalar noise model that is chosen
because it is uniformly distributed as a rotation tensor. In
computer graphics, there are two kind of noise that can
be applied to the simulation of collection motion: Perlin
noise and Curl noise. Perlin noise is a type of gradient
noise that consists of a collection of lattices of random
gradients in which the values between lattices are ob-
tained by interpolation [27]. Curl noise is incompressible
velocity fields which is based on Perlin noise and its am-
plitude can be modulated in space as desired [10]. Chaté
et al. [20] propose the notion of angular noise (a scalar)
and vectorial noise (a vector), both of them are uniformly
distributed.

2.3. Evaluation Methods
Dynamic multi-agent models can produce behaviors

qualitatively similar to real biological systems. Luke-
man et al. [9] validate their results by overlaying them
on original images. However, it cannot be used to ac-
curately evaluate the dynamics of a swarm. Other tech-
niques have been proposed in evaluating the accuracy
of human crowds, including parameter optimization ap-
proaches [28, 29] that use real-world crowd trajectories.
Guy et al. [30] propose an entropy-based evaluation ap-
proach to quantify the similarity between real-world and
simulated trajectories. However, these approaches are un-
able to model the inherent noise.

3. DATA-DRIVEN NOISE MODEL
It is well known that insects exhibit noise-induced

movements and sudden changes in direction as a protec-
tion mechanism [2, 4]. Thus, it is important to develop a
parametric noise model that can simulate different insect

behaviors [24-26].
We present a data-driven approach that uses real-world

insect trajectory datasets to model the noise. In particular,
we first introduce an evaluation method to evaluate and
compare the simulation results of a dynamics model that
computes insect trajectories based on real-world datasets.
Next, we use this evaluation metric to compare the accu-
racy of different noise models, based on the insect trajec-
tory datasets.

3.1. Model Evaluation
The simplest technique for evaluating a model is to

render the trajectories and observe the insect movements.
However, basing an evaluation of whether a given dy-
namics model can capture all aspects of insects’ emer-
gent behaviors on visual rendering alone is not suffi-
cient [16]. We present a novel quantitative approach to
evaluate insect dynamics models by using real-world tra-
jectory datasets. Our approach accounts for some key as-
pects of insect behaviors and trajectories based on seven
time-varying metrics.

It is possible that two different swarms with noisy
trajectories may exhibit similar swarm behaviors even
when their trajectory positions are quite different. Our
approach uses discrete probability density distribution
functions (PDF) that are generated from the time-varying
metrics and reflects the global characteristics of insect
swarms. The influence of a small amount of data abnor-
mality or noise can be ignored.

Our evaluation model is represented by the following
equation, which contains seven energy terms:

E = 1−
∑
φ∈Φ

wφEφ, (1)

where Φ = {v, a, ω, α, µ, d, η}, which consists of seven
time-varying metrics (see Section 3.2): v the velocity, a
the acceleration, ω the angular velocity, α the angular ac-
celeration, µ the Cartesian jerk, d the shortest distance,
and η the velocity difference. These seven metrics are in-
spired from the biological literature (more details in Sec-
tion 3.2). Eφ denotes the energy term about the metric φ,
and wφ denotes the weight of Eφ.

For a metric φ in Φ, Eφ is the energy term that rep-
resents the difference in discrete PDF between the real-
world data and the simulation data. We formulate Eφ as

Eφ =
∥∥Qrealφ −Qsimφ

∥∥
1
, (2)

where Qrealφ denotes the discrete PDF of an insect
swarm’s metrics from real-world captured data andQsimφ
represents the discrete PDF of an insect swarm’s metrics
from our swarm simulation model. We compute Eφ in
four steps as follows:

Step 1: Sample the real data and the simulation data
for the metric φ. For one set of real data or simulation
data, compute the metric φ for all insects in all frames;

Step 2: Normalize the samples with the z-score
method which refers to a mean shift followed by a stan-
dard deviation scaling. Because the real-world data and



the simulator’s output have different quantity scales, we
must normalize the samples before comparing. We sim-
ply apply the z-score normalization method to the time-
varying metric φ;

Step 3: Compute the discrete PDFs of the real-world
data and the simulator’s data with normalized samples
from Step 2. For example, we can consider the real-world
data: let S be the number of samples, and let [u1, u2] be
the interval of a given metric φ. We divide the interval
[u1, u2] into M equal sub-intervals. When we consider
the ith subinterval [u1 + u2−u1

M (i−1), u1 + u2−u1
M i] with

Si samples, the probability density in the ith interval is
given as Qrealφ,i = SiM

S(u2−u1) . The probability density of
the simulation data in the ith interval Qsimφ,i can be calcu-
lated similarly;

Step 4: Compute the energy term Eφ: the difference
of the discrete PDFs between the real data and the simu-
lation data, and Eφ =

∑M
i=1

∣∣∣Qrealφ,i −Qsimφ,i
∣∣∣.

We normalize the energy terms in Equation 2:

Eφ =

∥∥∥Qrealφ −Qsimφ
∥∥∥

1
− p1φ

p2φ
, (3)

where p1φ and p2φ are normalization parameters. The

computation of
∥∥∥Qrealφ −Qsimφ

∥∥∥
1

is the same as in Equa-
tion (2).

3.2. Time-varying metrics
We present seven time-varying metrics that are used to

evaluate the trajectories and behaviors of insect swarms.
These metrics are designed based on prior work and
known characteristics of insect behaviors. A higher eval-
uation with respect to our metric indicates that the result-
ing simulation algorithm results in more realistic simula-
tion results.

Velocity: Velocity is a basic metric used to evaluate
the motion of an agent. We measure the magnitude of
velocity v.

Acceleration: We can consider the acceleration as an
effective net force on an insect [7]. We use the magnitude
of acceleration a.

Angular velocity & acceleration: Angular rotations
of an insect’s body result in Coriolis forces, and the tra-
jectory of an insect is affected by that force [31]. There-
fore, we account for angular velocity and angular ac-
celeration. The angular velocity is defined as the rate

of change of angular displacement ω =
arccos

v1v2
|v1||v2|

∆t ,
where v1 and v2 represent the velocity of one insect in
neighboring time points. The angular acceleration is de-
fined as α = ∆ω

∆t .
Cartesian jerk: Insect behavior tends to include some

inherent noise [4], whereas humans and large animals
typically move in a trajectory with gradual changes. The
Cartesian jerk is used to represent the noise of insects’
motion. Cartesian jerk is mathematically defined as
the rate of change of acceleration [32] and reflects the
smoothness of velocity µ =

∥∥∥∆v1−∆v2
(∆t)2

∥∥∥
2
, where µ is

the magnitude of the second order differential of veloc-
ity, ∆v1 and ∆v2 are the velocity changes of one insect
in neighboring time points.

Shortest distance: The density of an insect swarm re-
flects the group’s degree of order [3] and the number of
insects per unit volume. But the number of samples for
density is limited, which affects discrete PDF computa-
tion. We note that the distance to the nearest neighbor
for each insect is a reflection of the density of an in-
sect swarm. Therefore, we choose the distance to nearest
neighbor [33] as our metric, and term it the shortest dis-
tance d. We formulate the shortest distance as follows:

d = min
k∈{1,2,...,N}\{m}

‖~pk − ~pm‖2 ,

where m denotes the ID of current insects, k denotes the
ID of other insects, N is the number of insects in the
swarm, and ~p denotes the position of the insects.

Velocity difference: Unlike bird flocks and fish
schools, a single insect in a swarm has little tendency
to align with its neighbors [7]. Therefore, it is impor-
tant to study the difference in velocity between neighbor-
ing insects to distinguish insect swarms from groups. If
the shortest distance has a large magnitude, the influence
of the difference in velocity to the corresponding metric
should be relatively weak. As a result, we formulate the
velocity difference as η = |vnei−v|

d , where vnei denotes
the magnitude of velocity of the nearest neighbor.

3.3. Model Evaluation with Entropy Weight
In this section, we describe our evaluation algorithm.

The overall evaluation has two components: optimiz-
ing the dynamics model parameters and optimizing the
weights of seven energy terms.

We evaluate dynamics models for insect swarms with
estimated optimal parameters (see Figure 1). The perfor-
mance of a dynamics model for insect swarms is sensitive
to the choice of underlying parameters. Therefore, we use
a genetic algorithm to compute the optimal parameters by
maximizing the evaluation function in Equation 1.

However, when we use the evaluation model to assess
the different simulation techniques for insect swarms, it
may require assigning different weights to each energy
term. Instead, we compute the weights of all the energy
terms automatically and then compute the final weighted
score to evaluate different insect simulation models for
fair comparisons. We use the entropy-based evaluation
method described in [34] to compute the weights of the
evaluation model in Equation 1 to provide reliable results.

Let m be the number of insect swarm simulation mod-
els evaluated, and n the number of different energy terms
defined in Equation 1. The resulting energy terms matrix
(before normalization) is X = (xij)m×n:

X =

 x11 · · · x1n

...
. . .

...
xm1 · · · xmn

 .
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Fig. 1 Parameter-estimation algorithm (Par-Est algo-
rithm). For the given real-world trajectory data of an
insect swarm, we compute the discrete PDFs of the
seven time-varying metrics using that data. Mean-
while, we use the parameterized dynamics model to
simulate the insects and compute the discrete PDFs
of the seven time-varying metrics with the simulation
data. Next, we evaluate the function given in Equa-
tion (1) and use that as an objective function for the
genetic algorithm to compute the optimal parameters.

We normalize matrix X as follows:

xij =
xij − p1j

p2j
,

where p1j = mini xij , p2j = maxi xij−mini xij are the
normalization parameters described in Equation 3. Let
R = (rij)m×n, rij = 1 − xij , and the entropy of an
energy term is defined as

ej = − 1
lnm

m∑
i=1

gij ln gij , j = 1, 2, ..., n,

where gij = rij∑m
i=1 rij

, and gij ln gij = 0 when gij = 0.
The weight of the ith energy term is calculated by

wj =
1− ej∑n

j=1(1− ej)
. (4)

We use this evaluation scheme to compare the perfor-
mance of prior multi-agent and insect swarm simulation
models. The resulting evaluation algorithm that can com-
pare the performance of different models insect swarms
is summarized as follows:

Step 1: Initialize the weights in Equation 1 and nor-
malization parameters in Equation 3; then, set the value
ranges of the parameters in the dynamics models;

Step 2: Compute the energy terms with optimal pa-
rameters of each model to be evaluated using the Par-Est
method shown in Figure 1;

Step 3: Compute the weights and normalization pa-
rameters with the energy terms matrix generated from
Step 2;

Step 4: If the weights of our evaluation model are
close to the weights computed in prior iterations, or the
current number of iterations reaches the maximum num-
ber of iterations, go to Step 5; otherwise go to Step 2;

Step 5: Return the results.

4. RESULTS AND ANALYSIS
In this section, we highlight the performance of our

evaluation method for noise modeling and multi-agent
simulation algorithm comparison for insect swarms.

We have implemented our evaluation approach in
MATLAB and insect swarm simulation in C++, both on
a PC with Intel Xeon CPU E3-1230 and 8GB memory.

4.1. Real-World Datasets
We use four insect trajectory datasets to compute the

appropriate noise model and estimate the parameters of
insect swarm simulations. Both of these datasets were
captured in an indoor setting with state-of-the-art motion
capture systems. The dataset-1 from [7] was captured in
a transparent 91cm cubical enclosure, and corresponds
to time-resolved measurements of the positions, veloci-
ties, and accelerations of individual insects in laboratory
swarms of the midge Chironomus riparius. The total
number of midges vary from 12 to 111 per frame. The
three other datasets, dataset-2, dataset-3, and dataset-4
were captured in a cube of 2m edge length with hundreds
of Drosophila (fruit flies) [8]. We choose 500 frames
from each of these four datasets.

4.2. Data-driven Noise Model
Our evaluation method can help dynamics models find

the suitable noise to make the simulation results more
likely to more closely resemble the real biological sys-
tem, and the form of noise function is not limited. In
this section, we use four noise functions as examples to
choose the most suitable noise for a certain dynamics
model; additionally, the type of dynamics model is not
limited.

4.2.1. Noise Function
The description of the four noise functions for the

stochastic term is as follows:
White noise: A scalar white noise W , which has a

probability distribution with zero mean and finite vari-
ance. A 3D white noise W consists of three W s that are
statistically independent. This noise is used in the SPP
model [2].

Gaussian white noise: An approximation of Gaussian
white noise G is generated from two white noises, W1

and W2, and expressed as:

G = λ ·
√
−2 · log(W1) · sin(2πW2),

where λ is a strength coefficient. This noise function is
used in most of the Brownian dynamics models [21, 22].

Perlin noise: Perlin noise correlates to position ri.
Assume that P is a scalar Perlin noise; thus, a 3D Per-
lin noise field P is generated by:

P(ri) =
(
P1

( ri

scale

)
,P2

( ri

scale

)
,P3

( ri

scale

))
· gain,

where scale and gain are two noise parameters: scale
is used to control the smoothness of noise indirectly, and
gain is used to adjust the magnitude of the noise.

Curl noise: Introduced by Bridson et al. [10], Curl
noise is used to simulate continuous noise trajectories.



Inspired by Wang et al. [35], Curl noise Ci can be de-
scribed as a force field related to the positions:

C(ri) = ∇×P(ri).

4.2.2. Noise Modeling
We compare four simulation models with four differ-

ent noise functions (mentioned in Section 4.2.1) but with
the same dynamics model (neglecting noise) based on the
algorithm described in Section 3.3. We selected the pa-
rameters of the dynamics model (neglecting noise) as the
common parameters for the four models, along with in-
tensity of the stochastic force for the white and Gaussian
noise, and scale and gain for Perlin noise and Curl noise.
Figure 2 shows the comparison results of the models
based on the four different noise types with four different
datasets. Curl noise provides the most accurate results
for our four datasets. All the detailed parameters used for
these results are given in the Appendix. The weight in the
evaluation model shown in Equation 1 with each dataset,
the normalization parameter p1φ, p2φ in Equation 3, and
the results with each dataset are also given in the Ap-
pendix. Snapshots of the comparison results are shown
in Figure 3. Please refer to the supplemental demo video
for the comparison results on different insects of the ani-
mation results.
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Fig. 2 The comparison results of the force-based model
with the four different noise functions. The force-
based model with Curl noise function is more accu-
rate with respect to the real trajectory-datasets than
the other noise functions.

4.3. Comparing Different Multi-Agent Simulation
Models

We compare 3 parameterized multi-agent simulation
models based on the algorithm described in Section 3.3:
dynamics with the noise model selected in Section 4.2.1,
dynamics simulation only, and using a noise model only.
For each model, we used our parameter estimation algo-
rithm to compute the optimal parameters. Figure 4 shows
the results comparing the three models with four differ-
ent ground truth datasets. Please refer to the appendix for
more details about the results.

In addition, we have rendered a side-by-side visual
comparison for these models by estimating the optimized
parameters according to the ground truth dataset 4. Snap-
shots of the comparison results are shown in Figure 5.

(a) The ground truth data (b) White noise

(c) Gaussian white noise (d) Perlin noise

(e) Curl noise

Fig. 3 Visual comparisons among different noise func-
tions.
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Fig. 4 We compared the simulation results of dynam-
ics with noise, dynamics only and noise only with
the real-world datasets, and we determined that our
method can improve the accuracy of dynamics.

4.4. Collective Behaviors with Noise Model
In this section, we highlight different collective behav-

iors that can be generated using our noise model com-
bined with the dynamics model, which gives a plenty of
behaviors driven by dynamics with noise.

Aggregation: We generated aggregation behaviors of
midges with different individuals. Figure 6(a) contains
500 midges and Figure 6(b) contains 3, 000 in the same
size of space. The swarm flies are with different densities:
9, 469.7/m3 and 56, 818.2/m3 (with their body length
set to 0.01m) respectively while the swarm center hardly
changes.

Locust Migration: Figure 7 shows locusts passing
migration. These two locust swarms simulated has: (a)
2, 000 individuals with density 34.2/m3; (b) 200, 000 in-



(a) The ground truth data (b) Dynamics with noise

(c) Dynamics Only (d) Noise only

Fig. 5 Visual comparisons among different models.

(a) (b)

Fig. 6 Aggregation: (a) and (b) simulated midges flying
in the same size of space with 500 and 3, 000 individ-
uals, respectively.

(a) (b) (c)

Fig. 7 Locust Migration: (a) and (b) show migratory lo-
custs pass through a grassland. The number of locusts
in (a) is 2, 000 and (b) is 200, 000; (c) a snapshot of a
real scene.

dividuals with density 342/m3, both of them with 0.04m
body length.

Competition for mates: Figure 8 shows male flies
competing for a female (in green color). The collective
behavior is generated based on known behaviors of males
and females [36].

Phase transition: Phase transition happens when the
density of the swarm reaches the critical point. in Fig-
ure 9(a) and (b), a swarm increases its density until it
reaches the critical point; (c) after the critical point, the
swarm merely changes its density but changes its direc-
tion suddenly.

Positive phototaxis: In this scenario, moths gather
around a street lamp (see Figure 10).

Startle/escape response: Figure 11 illustrates the re-
sponse of a fly swarm to a predator-like object. When the
predator-like object is close, each insect will run away.

Swarm of bats in a cave: Some behaviors of bats are

(a) (b)

Fig. 10 Positive phototaxis: (a) a snapshot of moths
swarm simulated by noise model. The number of
moths is 80; (b) a picture of a real scenario.

(a) (b)

Fig. 12 (a) A swarm of bats rapidly responds due to
echolocation in a cave simulated by the noise model;
(b) a real snapshot of bats.

similar to insect swarm. Bats can respond rapidly to the
wall of the cave due to echolocation. We give a real snap-
shot of bat flies in a dark cave in Figure 12(b). In Fig-
ure 12(a), we simulate echolocation behavior by the noise
model.

5. CONCLUSIONS AND FUTURE WORK
We have presented a novel PDF-based evaluation

method to analyze the similarity between a simulation
movement and a real dataset using entropy theory. We
use our evaluation method to select the best suitable data-
driven noise function that can be combined with a force-
based simulation model. In addition, we compared dif-
ferent multi-simulation techniques using our evaluation
method.

Limitations: We use genetic algorithms to estimate
the parameters in our current implementation. Because
genetic algorithms are probabilistic, they may not give
optimal answers. Additionally, our implementation is not
optimized and the running times can be considerably im-
proved. Since our method is data dependent, over-fitting
may occur if the trajectory dataset is too sparse or insuffi-
cient. Ultimately, we would like to evaluate its accuracy
or performance on a large number of trajectory datasets.

Future work: We would like to collect more real tra-
jectories of complex insect swarm behaviors, such as es-
cape responses and migration. This can further improve
the accuracy of our data-driven models and the overall
simulation. We would like to use it for simulation other
collective behaviors or use on different insect species.
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(a) (b) (c)

Fig. 8 Competition for mates: (a) the male flies close to the female for chasing her; (b) more males join in; and (c) some
time later, most of the male flies chase the female.

(a) (b) (c)

Fig. 9 Phase transition: (a) and (b) the swarm moves with the center position hardly changes before the density reaches
the critical point; (c) when the density is 50/m3, the phase transition happens.

(a) (b) (c) (d)

Fig. 11 Startle/escape response: When a predator-like object (the sphere) attacks the swarm, individuals escape quickly
to avoid it. The individuals aggregate slowly when the predator-like object disappears.
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Grégoire, and Franck Raynaud. Collective motion
of self-propelled particles interacting without cohe-
sion. Physical Review E, 77(4):046113, 2008.

[21] Jessica Strefler, Udo Erdmann, and Lutz
Schimansky-Geier. Swarming in three dimen-
sions. Physical Review E, 78(3):031927, 2008.

[22] Pawel Romanczuk, Iain D. Couzin, and Lutz
Schimansky-Geier. Collective motion due to indi-
vidual escape and pursuit response. Physical Re-
view Letters, 102(1):010602, 2009.

[23] Carlos Escudero, Christian A Yates, Jerome Buhl,
Iain D Couzin, Radek Erban, Ioannis G Kevrekidis,
and Philip K Maini. Ergodic directional switch-
ing in mobile insect groups. Physical Review E,
82(1):011926, 2010.

[24] Maximino Aldana, Victor Dossetti, Christian
Huepe, VM Kenkre, and Hernán Larralde. Phase
transitions in systems of self-propelled agents and
related network models. Physical Review Letters,
98(9):095702, 2007.

[25] M Aldana, H Larralde, and B Vázquez. On the
emergence of collective order in swarming systems:
a recent debate. International Journal of Modern
Physics B, 23(18):3661–3685, 2009.
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