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Abstract— We present AutonoVi, a novel algorithm for au-
tonomous vehicle navigation that supports dynamic maneuvers
and integrates traffic constraints and norms. Our approach is
based on optimization-based maneuver planning that supports
dynamic lane-changes, swerving, and braking in all traffic
scenarios and guides the vehicle to its goal position. We
take into account various traffic constraints, including collision
avoidance with other vehicles, pedestrians, and cyclists using
control velocity obstacles. We use a data-driven approach to
model the vehicle dynamics for control and collision avoidance.
Furthermore, our trajectory computation algorithm takes into
account traffic rules and behaviors, such as stopping at inter-
sections and stoplights, based on an arc-spline representation.
We have evaluated our algorithm in a simulated environment
and tested its interactive performance in urban and highway
driving scenarios with tens of vehicles, pedestrians, and cyclists.
These scenarios include jaywalking pedestrians, sudden stops
from high speeds, safely passing cyclists, a vehicle suddenly
swerving into the roadway, and high-density traffic where the
vehicle must change lanes to progress more effectively.

I. INTRODUCTION

Autonomous driving is a difficult and extremely complex
task that has immense potential for impacting the lives of bil-
lions of people. In order to develop autonomous capabilities
to perform the driving task, we need appropriate capabilities
to sense and predict the traffic and road obstacles, as well
as for planning, control, and coordination of the vehicle [1],
[2]. There is considerable research in this area that borrows
ideas from different disciplines including computer vision,
machine learning, motion planning, mechanical engineering,
intelligent traffic simulation, human-factors psychology, etc.

Research into sensing and perception technologies has
been progressing considerably and current vehicle sensors
have the capability to detect many relevant obstacles, vehi-
cles, and other traffic entities including bicycles and pedestri-
ans. However, automatic planning in different scenarios and
the computation of the appropriate response to vehicle and
non-vehicle entities, such as bicycles and pedestrians, are still
the subjects of ongoing research. A key issue is the devel-
opment of an efficient navigation algorithm for autonomous
driving that takes into account the vehicle dynamics, sensor
inputs, traffic rules and norms, and the driving behaviors
of other vehicles. Moreover, the uncertainties in the sensor
data, the capability, and response of the autonomous vehicle,
typically referred to as the ego-vehicle [3], have led to
the development of behavior and navigation algorithms that
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impose conservative limits on the acceleration, deceleration,
and steering decisions. For example, algorithms tend to limit
hazard responses to either steering only [4], [5] or braking
only [6]. Few algorithms demonstrate combined control of
throttle and steering and typically do so in constrained
navigation scenarios [7]. In terms of planning the routes
and navigating the roads, current algorithms tend to limit the
lane-changing behaviors, precluding their use for progressing
more quickly to a goal or better utilization of the road
conditions. These limitations have led to the perception that
autonomous cars behave more like student drivers taking
their driving test than actual skilled human drivers [3]. One of
the goals is to extend the capabilities of current autonomous
vehicles in terms of planning, control, and navigation, mak-
ing them less conservative but still allowing safe performance
during driving.

Main contributions: We present a novel navigation algo-
rithm for autonomous vehicles, AutonoVi, which utilizes a
data-driven vehicle dynamics model and optimization-based
maneuver planning to compute a safe, collision-free trajec-
tory with dynamic lane-changes. Our approach is general,
makes no assumption about the traffic conditions, and plans
dynamically feasible maneuvers in traffic consisting of other
vehicles, cyclists, and pedestrians. In order to develop an au-
tonomous vehicle planning approach with these capabilities,
we present four novel algorithms:

• Optimization-based Maneuvering: We describe a
novel multi-objective optimization approach for evalu-
ating the dynamic maneuvers. Our algorithm encodes
passenger comfort, safe passing distances, maneuver
constraints in terms of dynamics, and global route
progress in order to compute appropriate trajectories.

• Data-driven Vehicle Dynamics: We use a data-driven
vehicle dynamics formulation that encodes feasible ac-
celerations, steering rates, and decelerations into a set
of per-vehicle profile functions, which can be quickly
evaluated. These profiles are generated by simulating
the ego-vehicle through a series of trials to obtain lateral
and longitudinal slip profiles. This data-driven model
generalizes to multiple vehicles and configurations.

• Collision avoidance with kinematic and dynamic
constraints: We present a collision avoidance algorithm
that combines collision-free constraints with specific
kinematic and dynamic constraints of the autonomous
vehicle. Our approach allows the autonomous vehicle to
steer away from collisions with other vehicles, pedes-



trians, and cyclists as well as to apply brakes, or use a
combination of steering and braking.

• Trajectory Planning with Traffic Rules and Behav-
iors: We present a trajectory planning algorithm that
encodes traffic rules and road behaviors along with lane-
following for computing safe trajectories. Our approach
is based on computing arcs along the center-line of the
current lane to generate an initial path that satisfies
all the constraints. This initial path is computed and
refined according to collision avoidance and maneuver
optimization computations.

We evaluate our algorithm in a set of traffic scenarios
generated using a physics-based traffic simulator in both
sparse and dense traffic conditions with tens of other ve-
hicles, pedestrians, and cyclists. We demonstrate collision-
avoidance events including a vehicle suddenly driving into
the road, traffic suddenly stopping ahead of the ego-vehicle
while travelling at high speed, and a pedestrian jaywalking
in front of the ego-vehicle, representing typical accident
scenarios [5]. Our approach enables advantageous use of lane
changes (e.g., overtaking) and adherence to traffic rules in
typical traffic conditions. It also exhibits safe maneuvering
in the presence of heavy traffic, pedestrians, and cyclists.

The rest of the paper is organized as follows: we detail
relevant related work in section 2. In section 3, we introduce
the vehicle kinematic model, define relevant assumptions,
and introduce the terminology used in the rest of the paper.
In section 4, we present our navigation algorithm, AutonoVi,
and its components. We present the details of our simulation
benchmarks in section V and highlight the results in section
VI.

II. RELATED WORK

The problem of autonomous driving has been widely stud-
ied in robotics, computer vision, intelligent transportation
systems and related areas. In this section, we give a brief
overview of prior methods which address motion planning
and navigation, dynamics, behavior generation, and collision
avoidance. More detailed surveys are given in [2], [8], [9].

Vehicle Kinematics and Dynamics Modeling: A number
of approaches have been developed to model the motion of
a moving vehicle, offering trade-offs between simplicity or
efficiency of the approach, and physical accuracy. Simpler
models are typically based on linear dynamics and analytical
solutions to the equations of motion [10]. More accurate
models provide a better representation of the physical mo-
tion, but require more computational power to evaluate and
incorporate non-linear forces in the vehicle dynamics [4].
The Reeds-Shepp formulation is a widely used car model
with forward and backward gears [11]. Margolis and As-
gari [12] present several representations of a car including
the widely used single-track bicycle model. Borrelli et al. [4]
extend this model by including detailed tire-forces.

Path Planning and Collision Avoidance: Prior ap-
proaches to path planning for autonomous vehicles are based
on occupancy grids [13], random-exploration [14], driving
corridors [15], potential-field methods [16], etc. Recent

approaches seek to incorporate driver behavior prediction
in path planning using game-theoretic approaches [17] and
Bayesian behavior modeling [18]. In addition, a variety of
algorithms have been proposed for planning paths for auto-
mobiles for navigation outside of road conditions and traffic
rules [19], [20]. Several techniques have been proposed to
specifically avoid hazards while remaining in a target lane.
These techniques can be coupled with a path planner to avoid
vehicles [21] and other hazards in the ego-vehicle’s lane [7].

Many continuous approaches for collision-avoidance have
been proposed based on spatial decomposition or velocity-
space reasoning. Berg et al. [22] apply velocity-space rea-
soning with acceleration constraints to generate safe and
collision-free velocities. Bareiss et al. [23] extend the concept
of velocity obstacles into the control space to generate a
complete set of collision-free control inputs. Ziegler et al. [1]
utilize polygonal decomposition of obstacles to generate
blockages in continuous driving corridors. Sun et al. [24]
demonstrate the use of prediction functions and trajectory
set generation to plan safe lane-changes.

Modeling Traffic Rules: Aside from planning the appro-
priate paths to avoid collisions, autonomous vehicles must
also follow applicable laws and traffic norms. Techniques
have been proposed to simulate typical traffic behaviors in
traffic simulation such as Human Driver Model [25] and
data-driven models such as [26]. Logic-based approaches
with safety guarantees have also been demonstrated [27]. An
extensive discussion on techniques to model these behaviors
in traffic simulation can be found in [28].

Autonomous Driving Systems: Many autonomous sys-
tems have been demonstrated that are able to navigate an au-
tonomous vehicle in traffic along a specific route. Ziegler et
al. [3] demonstrated an autonomous vehicle which drove the
historic Bertha Benz route in southern Germany. They use a
conservative navigation approach, which specifically encodes
lanelets for lane changing and does not account for dynamic
lane changes. In contrast, our algorithm allows the vehicle
to change lanes when our maneuver optimization method
deems it appropriate and does not rely on pre-encoded
changes. Geiger et al. [29] demonstrate a planning and
control framework that won the Grand Cooperative Driving
Challenge in 2011. This vehicle was designed for platooning
and employed controls over acceleration only. Our navigation
algorithm plans maneuvers using both steering and accelera-
tion to operate in more generic traffic scenarios. The DARPA
Urban Grand Challenge included a number of autonomous
vehicle navigating examples of driving scenarios [30]. While
overtaking was allowed as an intended capability in these
systems, the vehicles were not evaluated in dense, high-speed
traffic conditions where the benefits of lane changes could
be demonstrated.

III. PROBLEM FORMULATION

In this section, we introduce the notation, the kinematic
and dynamics model of the car and the state space of the
vehicle in terms of both physical configuration and behavior
space.
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Fig. 1. Algorithm Pipeline: Our autonomous vehicle planning algorithm operates in several sequential steps. First, a route is planned using graph-search
over the network of roads. Secondly, traffic and lane-following rules are combined to create a guiding path for the vehicle for the next planning phase.
This guiding path is transformed to generate a set of candidate control inputs. These controls are evaluated for dynamic feasibility using our data-driven
vehicle dynamics modeling and collision-free navigation via extended control obstacles. Those remaining trajectories are evaluated using our optimization
technique to determine the most appropriate set of controls for the next execution cycle.

A. Vehicle State Space

We represent the kinematic and dynamic constraints of the
vehicle separately. In terms of trajectory planning, steering
and throttle controls that could lead to skidding or a loss of
control are first excluded in our dynamics model (see section
IV-F) and future trajectories are computed according to our
vehicle kinematic model described in equation (1).

We extend the simple-car kinematic model [10], [31]. The
vehicle has three degrees of freedom in a planar coordi-
nate space. These are the position of the center of mass
~p = (px, py), and the current heading or orientation θ. We
represent the speed of the vehicle as v and steering as φ.
Lf and Lr represent the distance from the center of mass to
the front and rear axles, respectively. The geometry of the
ego-vehicle is represented as Oe.

The vehicle has two degrees of control, throttle (ut) and
steering (uφ). We define throttle −1 ≤ ut ≤ 1, where
−1 indicates maximum braking effort for the vehicle and
1 represents maximum throttle. −1 ≤ uφ ≤ 1 describes the
steering effort from −φmax to φmax.

We also use acceleration and steering functions, A(v, ut)
and Φ(v, us), respectively, which describe the relationship
between the vehicle’s speed, steering, and control inputs and
its potential for changes in the acceleration and steering (see
section IV-F). A and Φ can be chosen to be constants in
the simplest model, or may be represented using complex
functions corresponding to tire dynamics and load transfer.
We describe our choice for A and Φ in section IV-F. The
vehicle’s motion can be described by:

ṗx = v cos(θ) ṗy = v sin(θ) θ̇ =
tan(φ)

Lf + Lr
v (1a)

v̇ = A(v, ut) φ̇ = Φ(φ, us) (1b)

In addition to the physical state of the vehicle, we describe
its behavior b as a label from a set of all behaviors B,
such as driving straight, turning left, merging right, etc.
The behavior state is used to modify parameters of each
stage of the algorithm. Each behavior state can encode a
set of weights of the maneuver optimization function, bias
the generation of a guiding path, and adjust the sampling
bias of our control-obstacle approximation and acceleration
when necessary (see section IV-A). The full state of a vehicle
is defined as Xe = {px, py, v, φ, ut, uφ, b}. The vehicle
updates its plan at a fixed planning rate ∆t. At each planning
step, the vehicle computes a target speed v′ and target
steering φ′ to be achieved by the control system. We refer

to equation (1) compactly as the state evolution function
Xt+∆t = q(Xt, u, t). We also define a function S(u,X)
which determines if a set of controls is feasible. Given the
current state of the vehicle, S(u,X) will return false if the
given input u will cause a loss of traction or control. We
describe this function further in section IV-F.

B. Sensing and Perception

We assume the vehicle is equipped with a sensing module
capable of providing information regarding the surrounding
environment. For each lane on a road, the sensing module
provides an approximation of the center line of the lane, l,
the closest point on the lane center to the ego-vehicle, ~lp,
and a reasonable value of the friction coefficient µ of the
road. Approaches have been presented to evaluate µ from
sensor data [32]. Our navigation algorithm utilizes the set
of nearby vehicles, pedestrians, bicycles, or other obstacles,
collectively referred to as neighbors, N within the sensing
range. For each neighbor n ∈ N , the sensing system provides
the neighbor’s shape, On, position, ~pn, and velocity ~vn.
Where possible, the sensing module provides the current
lane ln, current acceleration v̇n, and current rate of turn,
θ̇ for the neighbor. We define a set of neighbor types, Tn,
including vehicle, pedestrian, cyclist, and obstruction. Each
neighbor is assigned a type Tn corresponding to the detected
neighbor type. The complete state of a neighbor is denoted
as Xn = {~pn,~vn, ln, v̇n, θ̇n}.

IV. NAVIGATION ALGORITHM

In this section, we describe our navigation algorithm.
Our algorithm operates in four sequential stages, shown
in Fig. 1. First, a route is constructed over the space of
roads in the environment. Secondly, a Guiding Path that
follows the current lane is computed that provides input
to the collision-avoidance and optimization-based maneuver
stages. The collision avoidance stage determines the set
of feasible candidate controls that represent dynamically
feasible, collision-free controls for the vehicle. Finally, a new
control is chosen for the vehicle based on the optimization-
based maneuver function.

A. Route Choice and Behavior State

In the first step of the algorithm, a global route for the
vehicle to follow to the goal is determined. This step is
performed only once unless special conditions (e.g., missing
a turn) force the vehicle to recompute a route. The ego-
vehicle is provided a connected graph of roads in the
environment from a GIS database. Each road in the graph
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Fig. 2. Finite State Machine: We highlight different behavior states that
are determined by the routing and optimization algorithms. When executing
turns, the routing algorithm transitions the behavior state to a turning state.
When the optimization-based maneuver algorithm plans a lane change, the
behavior state is transitioned to merging. Behavior states can bias control
sampling and can encode specific weights for the optimization function.

contains information on the number and configuration of
lanes in the road and the speed limits. When a destination is
chosen, we use A* search to compute the shortest route to
the goal and construct a route plan.

Each step of the route plan encodes how the vehicle
transitions from one road to the next. We denote these
as road-transition maneuvers. A road-transition maneuver
consists of the valid source lanes, valid destination lanes,
the position along the road at which the maneuver begins,
denoted ~pm, and the behavior implied by the road transition.
The set of behaviors includes merging, right turns, left
turns, and driving straight. Once the road-change maneuver
is completed, the vehicle navigates along the lanes of the
new road until the next maneuver node is reached. Lane
changes are not encoded in the maneuver nodes, but they
are performed implicitly based on the optimization function
described in section IV-E.

The behavior state of the vehicle is described by a finite-
state machine shown in figure 2. It is used to restrict
potential control decisions and adjust the weight of the cost-
function for specific maneuvers, such as turning. This allows
our algorithm to force the vehicle to be more conservative
when performing delicate maneuvers. For example, the valid
steering space is constrained in turns to guarantee that the
vehicle moves closely along the center line.

B. Guiding Path

The ego-vehicle computes a set of waypoints, denoted
{~w1, ~w2...~wk}, along the center-line of its current lane at
fixed time intervals, which represent the expected positions
for a planning horizon, τ . Using its own position, the median
point, and the final waypoint (~p, ~w k

2
, ~wk), we compute a

circular arc on the road plane which sets the initial target
speed and steering, v′ and φ′ respectively, and acts as the
guiding path for the next planning phase. We use circular
arc approximations because they implicitly encode the radius
of curvature needed for slip computation, making it easy to
check whether the dynamic constraints are violated. Absent
discontinuities in the center-line of the lane, the guiding paths
exhibit first-order C1 continuity. Figure 3(a) demonstrates a

(A) (B) (C)

Fig. 3. Guiding Path Computation: The vehicle computes a guiding
path to the center of its current lane based on a circular arc. (A): When the
vehicle tracks a path off the center of its current lane, the guiding path leads
it smoothly back to center. (B): In cases where the guiding path represents
abrupt changes to heading, the center point is reflected about the axis formed
by the car’s position and the final waypoint. (C): In the case of lane changes,
the guiding path is computed by a weighted average of the waypoints on
the departure and destination lanes.

guiding path constructed for a sample lane.
We constrain the arcs to lie within the first two quadrants

of the circle that is represented by three waypoints. In cases
when the vehicle’s trajectory tracks away from the center
of the lane, e.g. during collision avoidance maneuvers, this
constraint may be violated, as shown in figure 3(b). In
such cases, the point ~w k

2
is reflected about the axis formed

between ~p and ~wk to correct the arc angle. In case of
lane changing, waypoints are constructed from a weighted
average of points sampled ahead on both the departure lane
and the destination lane. Figure 3(c) demonstrates a set of
lane-change arcs.

Given a guiding path, a target steering φ′ is computed
from equation (1a). The radius of the arc, r, is substituted
into equation (9) to determine the maximum safe speed for
the current road curvature. A target speed, v′, is computed
from the minimum value of the current speed limit and the
maximum safe speed. The target steering and speed form the
basis of the control-obstacle exploration in the subsequent
stage.

1) Traffic Rules: Many rules of the road, such as maintain-
ing safe distances, driving on the correct side of the road,
avoiding collisions, obeying speed limits, and yielding are
captured implicitly in our algorithm. Traffic rules such as
stopping at red lights and stop signs are encoded explicitly.
When choosing a target speed v′, the sensing system is ref-
erenced to determine if an intersection, round-about, merge,
etc. is being approached and whether the vehicle needs to
stop. In cases where the vehicle must stop, the edge of the
intersection is used to compute a stopping point and v′ is set
to the speed that will reach the stopping point at τ seconds.
In case of stoplights, the green light signals v′ to return
to its original value. In the case of stops with continuous
cross-traffic, the vehicle waits until the collision-avoidance
algorithm indicates safety. In the case of all-way stops, the
vehicle maintains a queue of vehicle arrival order, but defers
to other drivers if they enter the intersection out of turn.



C. Collision Avoidance

We leverage the theory of Control Obstacles for collision
avoidance [23]. Control Obstacles construct constraints in the
control space and are an extension of acceleration-velocity
obstacles [22]. For each neighbor of the ego-vehicle, n, we
define the control obstacle for the neighbor as the union of
all controls that could lead to collisions with the neighbor
within the time horizon, τ . Given t, where 0 ≤ t ≤ τ , the
relative position of the ego-vehicle and neighbor ~pen must
remain outside the Minkowski Sum given by the formulation,
which is defined as

Oen = On ⊕−Oe. (2)

The complete derivation for control obstacles can be found
in [23].

In order to adapt to the autonomous vehicles, we modify
the original control obstacle formulation [23] in the follow-
ing manner: (1) we do not assume reciprocity in collision
avoidance and the ego-vehicle must take full responsibility
for avoiding collisions; (2) we do not assume the control
inputs of other vehicles are observable, which is consistent
with the first point; (3) we do not assume bounding discs
for the neighboring entities, but rather a tight bounding
rectangle. The Minkowski Sum for two convex polygons can
be computed in linear time in the number of edges; (4) we
choose a new feasible control by minimizing the objective
function defined in section IV-E, rather than by minimizing
the deviation from v′ and φ′.

The union of all control-obstacles and the set of dynami-
cally infeasible controls form the boundary of the space of
admissible controls for the ego-vehicle. As long as a new
control set is chosen from this space, the ego-vehicle will
be collision-free for the next τ seconds. This approach is
conservative and it is possible that there may be no feasible
solution. In that case, we reduce τ and search for a feasible
solution.

D. Trajectory Sampling

Computing the exact boundary of the control obstacle
is computationally expensive. Moreover, depending on the
choice of A and Φ, the boundary computation will typically
not have an analytical solution. In order to ensure that the
vehicle can plan within a specific time bound, we use a
sampling strategy around φ′ and v′ to determine a feasible
control that the vehicle will adopt for the next τ seconds.
Each sample is referred to as a candidate control and
represented as uc.

First, the closest collision-free velocity to v′ is determined
where φ = φ′ by forward projection. This represents the
largest speed the vehicle could take without deviating from
the center-line of its lane and is always included in the set of
candidates. Next, we compute evenly spaced samples around
the point (v′, φ′) in the control space.

For each neighbor n ∈ N , we compute a set of states for
that neighbor for the next τ seconds by forward integration
of q(Xn, ∅, t). We assume the neighbor moves along its
current velocity ~vn subject to the current observed values

of turning and acceleration, θ̇ and v̇n, respectively. If the
lane information is available, we assume that the neighboring
vehicle will follow its current lane at the current speed
subject to the current acceleration during this time interval.

For each candidate control, uc, we determine whether
equation (9) is violated by the candidate control inputs and
immediately discard it if that is the case. If not, the sample
points are computed at even time intervals along 0 ≤ t ≤ τ
by forward integration of q(Xt, uc, t). For each position
in time, ~pt, we compute the relative position with each
neighboring position at that time and determine if the relative
position lies inside the Minkowski Sum. If so, we discard the
candidate controls. After all the candidates are evaluated, the
new control sequence is chosen by minimizing the objective
function described in the subsequent section.

E. New Trajectory Computation

Once a set of suitable control candidates has been com-
puted, the vehicle selects the valid controls that minimize the
following cost function at each sample point i ∈ I:

C =

I∑
i=0

cpath(i) + ccmft(i) + cmnvr(i) + cprox(i). (3)

This function corresponds to producing paths which are
comfortable for passengers, provide safe passing-distances
from other vehicles, and respect the constraints of upcoming
maneuvers the vehicle must perform. Each term consists of
several cost evaluation functions, each with its own weight
e ∈W , which are described in the following sections.

1) Path Cost: cpath encodes costs associated with the
vehicle’s success at tracking its path and the global route.
This is given as:

cpath = cvel + cdrift (4)

cvel = (v′ − v)2; cdrift = ||~p−~lp||2

(5)

cvel is the squared difference between desired speed and
current speed and cdrift is the squared distance between the
center line of the vehicle’s lane and its current position. If
the path crosses a lane boundary, cdrift is computed with
respect to the new lane. These terms drive the vehicle to
choose trajectories that maximally progress the ego-vehicle
along its computed route between steps.

2) Comfort Costs: Comfort costs are computed similar
to [1] and penalize motions which are uncomfortable for
passengers in the vehicle. caccel penalizes large accelerations
and decelerations. cyawr penalizes large heading changes and
discourages sharp turning. The comfort costs are given as:

ccmft = caccel + cyawr; (6)

caccel = ||v̇i||; cyawr = ||θ̇||

.



Fig. 4. Results: (A) and (B): The ego-vehicle is forced to stop as a pedestrian enters the roadway during the Jaywalking benchmark due to the proximity
costs. Once the pedestrian has moved away, the vehicle resumes its course. (C) and (D): The ego-vehicle approaches a slower moving vehicle from behind.
The path and maneuver costs drive the ego-vehicle to plan a lane-change around the slower vehicle. The trajectory of the ego-vehicle is shown in green.
(E): The Hatchback ego-vehicle during the S-Turns benchmark. The vehicle plans the highest speed it can safely maintain during the tight turns. Each
ego-vehicle plans an appropriate speed based on their data-driven vehicle dynamics functions. (F): An overview of the Simulated City benchmark. The
ego-vehicle navigates amongst typical traffic to a set of randomly assigned destinations. (G): The ego-vehicle (outlined in green) yields to an oncoming
vehicle (outlined in red) during the Simulated City benchmark. Once the vehicle clears the intersection, the ego-vehicle proceeds with a left turn. (H):
The ego-vehicle (outlined in green) stops in traffic waiting for a stoplight to change during the Simulated City benchmark.

3) Maneuver Costs: The novel maneuvering cost func-
tion discourages lane-changes without excluding them and
guides the vehicle to occupy the necessary lane for its next
maneuver. The formulation is given as:

cmnvr = clane + cmdist (7)
clane = 1 · LaneChanged

cmdist =
1

~p− ~pm
·WrongLane

LaneChanged is a boolean variable representing whether a
candidate path crosses a lane boundary. ~pm is the position of
the next maneuver change, e.g. the beginning of a right turn.
This position is determined by the point of maneuver and
starts in the desired lane for the maneuver. WrongLane is
a boolean that evaluates to true if the vehicle’s lane does not
match the lane for the next maneuver. If a candidate control is
chosen where for some point i ∈ I , LaneChanged evaluates
to true, a lane change behavior is initiated in the finite state
machine.

4) Proximity Costs: While the collision avoidance stage
prevents the vehicle from colliding with neighbors, the
proximity cost term is designed to prevent the vehicle from
passing close to neighboring entities based on the identified
type of the neighbor, Tn. This cost is represented as a cost
distance term with exponential decay based on the relative
positions of the ego-vehicle and its neighbor.

cprox =

N∑
n=0

d(Nj , ~p) (8)

d(Nn, ~p) = CtypeTn
· e−||~pn−~pe||

Ctype is a per-type constant cost value. Ctype is larger for
pedestrians and bicycles than for vehicles, and guides the
ego-vehicle to pass those entities with greater distance.

F. Data-driven Vehicle Dynamics Model

In order to determine values for A(v, ut) and Φ(φ, us),
we use a data-driven approach to model the dynamics of
the vehicle. For each ego-vehicle, data are collected by
driving the vehicle from v = 0 to v = vmax at the
highest possible throttle without loss of traction. Similarly,
for braking, the vehicle is decelerated from v = vmax to
v = 0 using the highest braking effort possible without
loss of traction. Data are collected at 60Hz for these values:
current speed, acceleration, and throttle/braking values. From
these data, piecewise-quadratic functions are constructed by
least squares fitting to represent the maximum available
acceleration and braking given the current vehicle state.
These values also define thresholds for the control safety
function S(u,X).

We determine Φ(φ, us) by fixing the vehicle’s speed and
collecting data for instantaneous changes to the steering
angle for a given us. We construct a piecewise- quadratic
function by least-squares fitting to represent the vehicle’s
steering dynamics. Based on the value of µ given by the
sensors, we determine the maximum feasible speed for a
given curvature from the centripetal force equation:

v =
√
µrg (9)

where r is the radius of curvature that is computed from
equation (1a). By substituting equation (1a) into equation
(9), and the angular velocity formula v = ω · r, we can
determine feasible steering for a given speed as

φ = tan−1(
(Lf + Lr) · µ · g)

v2
). (10)

Given the generated functions S, A, and Φ, the future path
of the vehicle can be evaluated quickly for planning future
controls.



G. Control Input

The set of controls chosen by the optimization function
is applied by a pair of PID controllers. One PID controller
drives the current speed to match the target speed. The
other drives the current steering angle to match the target
steering angle. By limiting the choice of candidate controls
to kinematically and dynamically feasible controls using our
data-driven vehicle dynamics model, the PID controllers are
sufficient to achieve the desired values.

V. EXPERIMENTAL EVALUATION

In this section, we detail the evaluation scenarios for our
navigation algorithm. Each scenario is chosen to test different
aspects of the algorithm including response time, safety, and
handling different traffic situations.

A. Ego-Vehicles

To demonstrate the generality of our approach, we tested
each experimental scenario on each of three vehicles. Vehicle
1, the hatchback, has a mass of 1365 kg, a length of 3.8m,
and a maximum steering angle of 60◦. Vehicle 2, the sports
car, has a mass of 1750 kg, a length of 4.6m, and a maximum
steering angle of 63◦. Vehicle 3, the SUV, has a mass of
1866 kg, a length of 4.8m, and a maximum steering angle
of 55◦.

B. Benchmarks

We conducted a series of simulations with each vehicle
representing a variety of the challenging traffic scenarios
faced while navigating city roads and highways.

Passing a bicycle: The ego-vehicle must pass a bicycle
on a four-lane road. The vehicle should maintain a safe
distance from the bicycle, changing lanes if possible to avoid
the cyclist. We perform the evaluation twice, once featuring
a vehicle in the adjacent lane preventing the vehicle from
moving to avoid the cyclist without first adjusting its speed.

Jaywalking Pedestrian: The vehicle must react quickly
to safely decelerate or stop to avoid a pedestrian stepping
into the road in front of the vehicle.

Sudden Stop at High Speed: The vehicle must execute
an emergency stop on a highway at high speeds when
the vehicle in front of it stops suddenly. We evaluate this
scenario in two conditions. First, we evaluate performance
with no other traffic aside from the ego-vehicle and stopping
vehicle. In this condition, swerving can be performed simply.
Secondly, we evaluate this scenario with surrounding traffic,
complicating any swerving maneuvers as the vehicle must
account for nearby traffic.

High-Density Traffic Approaching a Turn: The ego-
vehicle approaches a stoplight at which it must execute a
turn, but the ego-vehicle’s lane is congested by slow traffic.
To make optimal progress, the ego-vehicle should execute a
lane change to the adjoining lane and return to the correct
lane with sufficient time to execute the turn.

Car Suddenly entering Roadway: The ego-vehicle trav-
els along a straight road at constant speed when a vehicle
suddenly enters the roadway, blocking the ego-vehicle’s

path. The ego-vehicle must decelerate and swerve to avoid
colliding with the blocking vehicle. We demonstrate this
scenario with the ego-vehicle travelling at 10, 30, and 50
mph and with the blocking vehicle obstructing either the
right lane or both lanes.

S-turns: We demonstrate the ego-vehicle navigating a
set of tight alternating turns, or S turns. Each ego-vehicle
computes an appropriate safe speed depending on the specific
kinematic and dynamic limits of the vehicle.

Simulated City: We demonstrate the ego-vehicle navi-
gating to several key points in a small simulated city. The
vehicle must execute lane changes to perform various turns
as it obeys traffic laws and navigates to its goals. The vehicle
encounters bicycles, pedestrians, and other vehicles as it
navigates to its waypoints.

VI. BENCHMARK RESULTS

We evaluated our navigation algorithm in these simulated
scenarios. The computational cost of the algorithm scales
linearly in the number of neighbors. The algorithm can avoid
tens of vehicles at interactive rates. As expected, the sports-
car and the hatchback were able to maintain their preferred
speeds more effectively in turns, whereas our SUV was
forced to reduce speed. Each of the vehicles was able to
pass other vehicles, pedestrians, and bicycles safely. We did
not observe the ego-vehicle colliding with simulated vehicles
in traffic.

Figure 4 details some interesting behaviors we observed
while testing our navigation algorithm. As expected, the ego-
vehicle utilizes lane-changes to pass slower vehicles when
no traffic prevents it. In traffic, the ego-vehicle slows down
until it is safe to pass in the adjoining lane. When interacting
with pedestrians, the high proximity cost discourages the
vehicle from changing lanes as the pedestrian passes, and
the vehicle instead waits until the pedestrian has moved
considerably. We refer the readers to the supplemental video
for demonstrations of the benchmark scenarios and to [33]
for a more extensive discussion of the results.

VII. CONCLUSION AND LIMITATIONS

We present AutonoVi, a navigation algorithm for au-
tonomous vehicles. Our approach uses a data-driven vehicle
dynamics model and optimization-based maneuver planning
to compute safe, collision-free trajectories with dynamic lane
changes under typical traffic conditions. We have demon-
strated our algorithm on a varied set of vehicles under
varying dense and sparse traffic conditions with pedestrians
and cyclists. We have also demonstrated that our vehicles
follow traffic laws, and utilize both braking and steering
simultaneously when avoiding collisions. We highlight many
benefits over prior methods in our simulations.

Our approach has some limitations. Though our data-
driven dynamics functions A, Φ, and S could generalize
to arbitrary complexity of underlying dynamics, our current
approach requires computing new vehicle dynamics func-
tions for different values of µ. In future work, we can
address this by learning a transfer function between various



road frictions to produce more general data-driven vehicle
dynamics functions. In addition, we have assumed perfect
sensing, which limits the applicability of the approach. In
future work, we will expand our algorithm to account for
sensing errors and uncertainties. These could incorporate
predictive behavior models to overcome imperfect state es-
timations for neighboring entities [18], [24]. The control
obstacle approach could then anticipate levels of reciprocity
from predictable vehicles. In addition, the use of circular
arcs may not be appropriate for vehicles with substantially
different geometries, such as trucks pulling trailers. We
would also like to incorporate real-world driving patterns
and cultural norms to improve our navigation algorithm, as
well as techniques to predict pedestrian motion from sensors
for safer navigation [34].
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