
AdaPT: Real-time Adaptive Pedestrian Tracking for crowded scenes

Aniket Bera1, Nico Galoppo2, Dillon Sharlet2, Adam Lake2 & Dinesh Manocha1

http://gamma.cs.unc.edu/AdaPT

Abstract— We present a novel realtime algorithm to compute
the trajectory of each pedestrian in a crowded scene. Our
formulation is based on an adaptive scheme that uses a combi-
nation of deterministic and probabilistic trackers to achieve
high accuracy and efficiency simultaneously. Furthermore,
we integrate it with a multi-agent motion model and local
interaction scheme to accurately compute the trajectory of each
pedestrian. We highlight the performance and benefits of our
algorithm on well-known datasets with tens of pedestrians.

I. INTRODUCTION

Pedestrian tracking is a well-studied problem in robotics
and related areas [37], [42]. Given a sequence of frames
corresponding to moving crowds, the goal is to extract
the trajectory of each pedestrian. As autonomous robots
are increasingly used in the physical world inhabited by
humans, it becomes more and more important to detect,
track, and predict the actions of pedestrians [29], [47]. We
need real-time pedestrian detection capabilities for collision-
free navigation in dynamic environments. The pedestrian
trajectories are used to predict future locations of people in
order to compute appropriate routes for the robots, such as
autonomous cars, mobile surveillance systems, wheelchairs,
and museum guides.

The problem of tracking objects and pedestrians has been
studied for almost two decades and remains a major chal-
lenge for crowded scenes [12]. Pedestrian tracking remains
a challenge in part because pedestrians tend to change their
speed to avoid collisions with obstacles and other pedestri-
ans. Also, there is a large variability in their appearance and
illumination, which makes it hard for color-based template
tracking algorithms to consistently track them. Finally, in
crowded scenes, the pairwise interactions between pedes-
trians can increase at a super-linear rate. Many approaches
have been proposed for online pedestrian tracking [6], [16],
[21], [22], but they can’t provide realtime performance as
the number and density of pedestrians in the scene increase.
Many other fast trackers have been proposed [8], [32], but
they only provide good accuracy in some scenes. It is also
important to combine these trackers with good models for
pairwise interactions and local collision-avoidance behavior

This work was supported by NSF awards 1000579, 1117127, 1305286,
Intel, and a grant from the Boeing Company.

1Aniket Bera & Dinesh Manocha are with the Department of Com-
puter Science, University of North Carolina at Chapel Hill. {ab,
dm}@cs.unc.edu

2Nico Galoppo, Dillon Sharlet and Adam Lake are with
Intel Corporation. {nico.galoppo, dillon.sharlet,
adam.t.lake}@intel.com

Fig. 1: Comparing AdaPT (bottom) with the Mean-shift
tracker [15] (top). AdaPT’s frame rate in this scene is 27 fps,
as compared to 31 fps for mean-shift tracker. However, our
algorithm is able to accurately compute all the trajectories,
shown as yellow lines. Red circles represent ground truth.
(Dataset - zara01 [20])

to improve their performance in crowded scenes [7], [27],
[43].
Main Results: We present a novel real-time pedestrian
tracking algorithm (AdaPT) that is targeted for low to
medium-density moving crowds. A key component of our
approach is an adaptive tracking algorithm, which automat-
ically combines two or more low-level tracking algorithms
(e.g. deterministic and probabilistic trackers) to simultane-
ously achieve high accuracy and efficiency. To estimate its
reliability, the algorithm keeps track of the state of each
pedestrian and its interactions with nearby obstacles and
other pedestrians. Furthermore, we integrate our adaptive
tracking algorithm with a multi-agent trajectory-estimation
and collision avoidance-algorithm (e.g. social forces). Our
algorithm automatically learns the best parameters for each
pedestrian over the first few frames and dynamically adapts
them as the low-level trackers and the motion model work
together to compute the trajectory of each pedestrian.

Our current implementation of AdaPT uses an adaptive
combination of mean-shift and particle trackers; we evalu-
ate its performance on well-known benchmarks, including



(a) Online Boosting (b) Mean-shift (c) AdaPT

Fig. 2: Performance comparison of AdaPT with other algorithms on a crowded scene: (a) Online Boosting [4](8 fps); (b)
MeanShift algorithm (31 fps); (c) AdaPT (27 fps). (Dataset - INRIA 879-38 I [31])

“BIWI Walking pedestrians" dataset [27] and “Crowds by
Example" dataset [20]. Our algorithm can track tens of
pedestrians at realtime rates (more than 25fps) on a multi-
core PC. Compared to prior realtime algorithms, our adaptive
scheme exhibits higher accuracy (Figure 2) or improved
performance (Figure 2).

The rest of the paper is organized as follows. Section II
reviews related work in tracking and motion models. Section
III gives a high-level overview of our approach. Section IV
describes our current implementation, and we highlight its
performance on different benchmarks in Section V.

II. RELATED WORK

In this section, we briefly review some prior work on
tracking methods and motion models. We refer the reader
also to a few excellent surveys [10], [41], [44].

At a broad level, pedestrian tracking algorithms can be
classified as either online or offline: online trackers use only
the present or previous frames while offline trackers also
use data from future frames. Zhang et al. [45] proposed an
approach that uses non-adaptive random projections to model
the structure of the image feature space of objects. Oron et
al. [25] presented an algorithm to estimate the amount of
local deformation in rigid or deformable objects. The color-
based probabilistic tracking algorithm proposed by Perez et
al. [28] is fast but prone to loss of trajectories from occlusion.
Collins’s algorithm [8] tracks blob via mean-shifts and is
widely used. Jia et al. [14] proposed a method to track objects
using a local sparse appearance model. Tyagi et al. [38]
proposed a method to track people using multiple cameras.

Some tracking algorithms methods are offline. The al-
gorithm proposed by Sharma et al. [34] performs offline
pedestrian tracking using an unsupervised multiple-instance
learning based solution. Rodriguez et al. [30] presented a
novel method for tracking pedestrians offline by exploiting
global information like crowd density and scene geometry.
However, these methods, which require future-state informa-
tion, are not useful for real-time applications.

Tracking algorithms can also be classified as deterministic
or probabilistic trackers based on their underlying search
mechanisms. Deterministic trackers iteratively attempt to
search for the local maxima of a similarity measure between

the target candidate (the location of the pedestrian in a frame)
and the object model (the initial state of the pedestrian). The
most commonly used deterministic trackers are the mean-
shift algorithm and the Kanade-Lucas-Tomasi algorithm.

In probabilistic trackers, the movement of the object is
modeled based on its underlying dynamics. Two well-known
probabilistic trackers are the Kalman filter and the particle
filter. Particle filters are more frequently used than Kalman
filters in pedestrian tracking, since the particle filters are
multi-modal and can represent any shape using a discrete
probability distribution.

Many pedestrian-tracking algorithms have been used in
robotics-related applications. Ess et al. [11] and Satake et
al. [33] proposed pedestrian tracking algorithms using stereo
cameras. Kobilarov et al. [17] described an approach to track
and follow pedestrians using a mobile robot. Luber et al. [24]
presented a novel method to track pedestrians using RGB-D
data based on sets of boosted features.

Motion Models: Many pedestrian-tracking algorithms im-
prove their accuracy by using motion models to predict
pedestrian trajectories. In some algorithms’ treatment of
crowded scenes, different pedestrian trajectories are assumed
to have a similar motion pattern. Song et al. [36] proposed
an approach that clusters pedestrian trajectories based on the
notion that “persons only appear/disappear at entry/exit.” Ali
et al. [2] presented a floor-field based method to determine
the probability of motion in highly dense crowded scenes.
Rodriguez et al. [31] used a large collection of public
crowd videos to learn crowd motion patterns by extracting
global video features. These methods are well suited only
for modeling the motion of dense crowds that contain few
distinct motion patterns. One of the most popular motion
models is the Social Force model by Helbing et al. [13].
In this archetypal pedestrian-tracking model, pedestrians are
modeled as particles that are affected by repulsive and
attractive forces [43]. Other models include LTA (Linear
Trajectory Avoidance) [7], LIN (constant speed model),
SBCM (Spatial behavior cognition model) [27], or RVO
(Reciprocal Velocity Obstacle) [39].

There have been hybrid approaches combining different
motion models and/ or different trackers [3], [5], [18],
[19], [23], [38], [46] but most of these methods are either



very compute intensive for realtime processing or have low
accuracy.

III. ADAPTIVE TRACKING ALGORITHM

In this section we formally define the notation being used
and give a high level overview of AdaPT.

A. Notation

We use the symbol LTn to represent the nth low-level
tracking algorithm. TJjn(t) represents the trajectory of the
jth pedestrian computed using the nth low-level tracking
algorithm at time t. Sj(t) is the state of the pedestrian at time
t and corresponds to Sj(t) = (Sj

p(t), Sj
v(t)), where Sj

p(t)
and Sj

v(t) are the positional and velocity component of the
pedestrian state at time t, respectively.

B. Algorithm

Fig. 3: Our Adaptive Pedestrian Tracking Algorithm: Every
video frame is processed in three stages. The low-level
tracking stage (blue) computes the trajectories from known
algorithms, such as deterministic or probabilistic trackers.
A key component of the adaptive scheme is the confidence
estimation stage (orange), which computes the most reliable
trajectory for each pedestrian. The high-level motion model
augmentation stage (green) uses a multi-agent approach to
model the interactions between the pedestrians and estimate
their trajectories. The shared modules are the modules used
in common by different components.

The main idea of this paper is to use an adaptive tracking
approach that analyzes disparate pre-existing low-level track-
ing models and is guided by a high-level motion model. Our
algorithm has three stages.

1) Low-Level Tracking Stage: During this stage, we run
the individual low-level trackers, which share some of the
common computational modules for reasons of efficiency.
The output of this stage is a collection of trajectories for
the pedestrians and a set of metrics that are used by other
stages to calculate the confidence, or the reliability, of these
individual trackers. We define Confn(t) as the confidence of
the nth low-level tracker at time t, and Mexn(t) as the set
of metrics for the nth low-level tracking algorithm at time
t:

Fig. 4: Algorithm Pipeline: We highlight the confidence-
estimation algorithm that uses the information from low-level
trackers and high-level motion model. The color of each mod-
ule (blue, orange, and green) represents the corresponding
stage in Figure (3).

[TJn(t),Mexn(t)]n=(0..m) = fLLT ([LTn(S(t))), (1)

where fLLT represents the low-level tracking stage of our
algorithm and m is the total number of low-level tracking
algorithms used.

2) Confidence Estimation Stage: In this stage, we analyze
the output of different trackers and calculate the accuracy of
each tracker relative to the others; the best one is produced
as the output of this stage

LTB(t) = fHTS([LTn(t),Mexn(t)]n=0..m), (2)

where fHTS represents the middle stage, m is the total
number of low-level trackers and LTB represents the best
tracker for that frame. We use two different techniques to
measure tracker confidence.

a) Temporal and Spatial Coherence Check: This
method is applicable to all trackers. The main idea is that
moving pedestrians do not abruptly change their velocities
or locations. If there is a sudden change in the pedestrian
state (Velocity, Position), we assume that change represents
a drop in the confidence level. We treat this property as a hard
check. If this check fails, the tracker automatically switches
to the next best low-level tracker. We measure the change
based on:

∆v(t) =
Sj
p(t)− Sj

p(t− 1)

Sj
p(t− 1)

, ∆p(t) =
Sj
v(t)− Sj

v(t− 1)

Sj
v(t− 1)

.

Intuitively, the tolerance values of ∆v and ∆p are different;
people change speeds quickly and easily, but changing their
position involves greater effort. So a tracker switch will occur
when either ∆v or ∆p cross a certain threshold. More detail
on these values are given in the implementation section.

b) Propagation Reliability: This is a tracker-specific
check to establish how well the object model matches the
target candidate at every frame. Many tracking algorithms
use the Bhattacharyya coefficient to measure the distance



between the original template or the object model to the
target candidate. In some tracking models, Kullback-Leibler
divergence or the Hellinger distance are used to quantify the
similarities between two probability distributions. We define
the confidence of that tracker to be a function of this distance
and the kernel size.

Confn(t) = TD(p, q, k), (3)

where TD is the function of the similarity of two probability
distributions that compare the target (p) with the object
model (q) and the kernel size(k). In low- or medium-density
crowds, the confidence estimate may drop and then rebound
when the tracker has caught up with another template that
also matches closely. It is quite possible that in this case
a tracker has switched to tracking a different pedestrian, as
most pedestrians have similar histograms due to the camera
positioning. We can capture this sudden drop of confidence
and switch automatically to another tracker.

For probabilistic trackers like the particle filter, we calcu-
late the confidence differently. We maintain the probability
distribution over the pedestrian state (position, velocity) of
the object being tracked. The distribution is a set of particles
(or weighted samples). The set of particles contains more
weight at locations where the object being tracked is more
likely to be. This distribution is propagated through time and
the weights are iteratively updated.

When calculating confidence, we define it as the mean of
the weights of the particles with the highest m weights.

Confn(t) =
1

m

m∑
i=0

wi, (4)

where [wi]i=0..m are the highest m weights of the particles.
After we have computed confidence measures for all

trackers, we classify each measurement into three classes:
high, medium, or low accuracy. Later in the implementation
section, we present the confidence values for this classifica-
tion based on our experiments.

The confidence values are sensitive to noise; therefore,
we divide them into discreet classes before classifying the
tracker. We aim to choose the tracker in the highest con-
fidence class. If two or more trackers belong to the same
highest class, the one with the least computational cost is
chosen as our best tracker.

Window Reset: After computing the best tracker for a
given frame, we reset and re-initialize the tracking template
for all the other low-level trackers to the location of the best
tracker and re-initialize the tracking parameters as:

[LTn(t)]0..n = Best([LT(i−1)(t)]0..n). (5)

Finally, we analyze all the confidence measures[Confi]0..n
and choose the best tracker amongst them. Switching be-
tween trackers can sometimes create a slight jitter or a sudden
“jump” in pedestrian motion, as the different trackers might
have slightly different trajectories. To reduce these artifacts,
the tracker switch is only performed when the Euclidean
between the trajectory of the best tracker and the next best

tracker exceeds a user-defined threshold. This results in
smoother trajectories and also reduces the number of window
resets.

3) High-Level Motion Model Augmentation Stage: We
integrate AdaPT with a pedestrian motion estimation model.
Pedestrians are modeled as particles that are affected by
repulsive and attractive forces [13]. Based on these social
rules and interactions, the motion model is used to generate
or estimate a trajectory for all pedestrians in the scene at
every time step.

In Figure (5) we highlight how we use a motion model to
compute the trajectory of each moving pedestrian and adap-
tively learn the simulation parameters based on the tracked
data. The resulting motion for each agent is computed using
statistical techniques, including Ensemble Kalman filters and
maximum-likelihood estimation algorithms, to learn individ-
ual motion parameters from noisy data.

Fig. 5: Overview of the High-Level Motion Model Augmen-
tation Stage. This stage draws input from the Confidence
Estimation stage, learns model parameters and improves
tracking by providing feedback. The feedback is bidirectional
and the model is re-trained after a fixed number of frames.
The ‘Decision’ module is a parameter that can be modified
depending on how much importance the motion model is
given.

The current pedestrian state is computed by using the
output from our best tracker and recursively re-estimating
the current state. The model combines the EM (Expectation-
Maximization) algorithm with an ensemble Kalman Filtering
approach to iteratively approximate the motion-model state
of each agent at every timestep.

We perform a Bayesian learning for each pedestrian.
Every pedestrian can be represented by a motion-model state
vector x. Given a pedestrian’s state (position, velocity and
preferred velocity), we use the motion model f to predict
the pedestrian’s next state xk+1. The motion model’s error
in predicting the state is denoted as q; it follows a Gaussian
distribution with covariance E. Hence,

xk+1 = f(xk) + q. (6)

After receiving the predicted pedestrian state parameters
from the motion model, we convert them into a Gaussian



probability distribution centered at the instantaneous position
and perpendicular to the velocity vector. We select the
tracker as follows. After converting the predicted state into
a probability distribution (as determined by the high-level
motion model augmentation stage), we examine the trackers
that fall into the higher-probability band and select the one
with the highest confidence (from the mid-level Confidence
Estimation stage). The probability threshold can be modified
based on how much weight is allocated to the motion model.
If it falls below a certain limit, we return to the confidence-
estimation algorithm stage and select the tracker with the
second-highest confidence level, and so on. If the threshold
limit is set very low, the motion-model results will not be
used. On the other hand, if it is set too high, the tracking
might fail if none of the low-level trackers meet the threshold.
We denote the motion model’s current prediction of the
positional state as Xp; the current best tracker has output
Xt at frame f . The guiding probability threshold used by
the tracking algorithm would be

pm(f) = e
−1
2 ‖Xp(f)−Xt(f)‖2 . (7)

IV. IMPLEMENTATION

In this section we present details of our implementation,
including various low-level trackers and the motion model. In
our current implementation, we use the Social Force Model
as the pedestrian motion model, along with the mean-shift
tracking algorithm based on fuzzy color histograms [15]and
the Sampling Importance Re-sampling (SIR) k-particle filter
[35]. We use mean-shift as the most inexpensive tracker and
then initialize the k-particle filter when the confidence in
the mean-shift tracker fails (Equation (3)). We only use the
particle filter when the reliability of the mean-shift tracker
is low (see Figure (6)).

Fig. 6: This graph demonstrates the adaptive use of different
low-level trackers for different frames along the green line.
When we notice that the confidence (blue) in the mean-
shift tracker drops (e.g. frames 13, 38, 56, and 90), we
re-initialize and re-start the particle filters with the prior
state information corresponding to the high confidence level.
Once the confidence in the mean-shift tracker increases (e.g.
frames 20, 48, 65, and 90), we switch off the particle filter
to reduce the computational cost.

The mean-shift tracker works well for most scenarios
and pedestrian locations, but its performance degrades with
high pedestrian density, occlusion or clutter in the scene. In
contrast, the k-particle filter works significantly better under
such conditions, but has a high computational cost. In our

experiments, we found that the SIR particle filter is at least
3 times to 4 times slower than the mean-shift tracker using
fuzzy color histograms (for k=100, where k is the number
of particles). In terms of the shared modules, we find that
histogram computations and color-space conversion (BGR to
HSV) are two modules that are used by both these trackers.

We use the following table to classify the confidence
values (Equation (3)) into three categories. The values in the

Confidence Class Change in confidence
High <0.07
Medium >0.07 & <0.4
Low >0.4%

table were computed after plotting the change in confidence
vs. percentage of error. These experiments were performed
on 21 different video benchmarks (including [20], [27]), and
the performance was compared with ground-truth results. In

Fig. 7: Change in confidence vs percentage of error. This
was performed to evaluate the variation in the confidence
function with respect to the tracking error. This classification
is used to determine whether the tracker accuracy for a
pedestrian is low, indicating that we need to switch to a
more accurate tracker.

our experiments, we have used the tolerance value 0.3 for
∆v and 0.6 for ∆p. These numbers were computed based
on Ounpuu ’s prior work on pedestrian kinematics in Bio-
mechanics [26].

A. Mean-shift using Fuzzy Color Histogram

The mean-shift tracker is a non-parametric feature-space
analysis technique. It is an iterative kernel-based method
that is used to locate the maxima of a density function
given discrete data sampled from that function. The mean-
shift tracking module is based on mean-shift iterations and
eventually finds the most probable target location during
each frame. The similarity match between the fuzzy color
distribution (Histogram) of the target model and the target
candidates is expressed by the Bhattacharyya coefficient.
Histograms are widely used as a form of target representation
because they are independent of rotation, scale changes and
even resolution changes.

We define the target model based on the normalized fuzzy
color histogram - ~q = {qu}1..m, where m = number of bins
in the histogram and

∑m
u=1 qu = 1). The target candidate



centered at y) is ~p = {pu(y)}1..m, where
∑m

u=1 pu = 1). ch
is the normalization factor The probability of feature u in
model is

qu = C
∑

b(xi)=u

k(‖xi‖2)Gu(f(xi)). (8)

The probability of feature u in candidate is given as

pu(y) = Ch

∑
b(xi)=u

k(

∥∥∥∥y − xih

∥∥∥∥2)Gu(f(xi)), (9)

where Gu is the output of the fuzzy cluster [15], {xi}i=1..n

are the target pixel locations, k(x) is an isotropic, differen-
tiable, convex, monotonically decreasing kernel profile with
bandwidth h, and b(xi) associates the pixel xi to the color
histogram bin (1..m).

We define the confidence (Confn(t)) of the tracker as

−

∥∥∥∥∥
∑m

u=1 (
√

pu(ymin)qcu)−
∑m

u=1(
√

pu(ymin)qiu)(1−Ks) +Ds∑m
u=1(

√
pu(ymin)qiu)

∥∥∥∥∥ ,
(10)

where Ks is the kernel size, Ds is the distance between
the center of the pedestrian in two consecutive frames, qi

is the initial target model, qc is the current target model,
and p(ymin) is the target candidate corresponding to the
maximum value of the Bhattacharyya coefficient.

B. Particle Filter

The particle filter is a parametric method that solves non-
Gaussian and non-linear state estimation problems. Because
it can recover from lost tracks and occlusions, the particle
filter is frequently used in object tracking. However, the
particle filter or the Kalman filter may not be fast enough
for real-time pedestrian tracking for low- to medium-density
crowds.

A particle-filter-based tracker maintains a probability dis-
tribution over the state of each pedestrian being tracked.
This distribution is represented as a set of weighted sam-
ples (particles). Every particle is a guess or a possibility
representing a state location of the object being tracked.
These particles are weighted, and these weights are updated
after every iteration. There is a greater likelihood of finding
the object near the set of particles with higher weight. We
can determine the trajectory of the tracked pedestrian by
evaluating the particle with the highest weight during each
time step. This weighted distribution is propagated through
time according to the motion model.

A particle filter solves the tracking problem based on the
following nonlinear state-space model: xt = f(xt−1, ut)+δt.
The measurement equation is yt = g(xt, vt) + ηt, where
xt is the state vector, f and g are the time-varying, non-
linear system equations, and u and v are independent but
identically-distributed stochastic processes. The objective is
to compute the pdfp(xt|y1:t) at every t.

We define the confidence for this tracker as

Confn(t) =

∑n/10
i=0 wi

n/10
, (11)

where n is the total number of initial particles and w is the
weights for the highest 10% of all the particles weights. We
use 10% of all particles is that at every state the particles
are refined, a narrower selection of particles increases the
possibility of finding the pedestrian but if its too low, there
is chance that we lose the pedestrian altogether.

The particle filterâĂŹs performance depends heavily
upon the characteristics of the scenes and the object
being tracked. Moreover, the number of particles needed
to model the variations of the probability distribution
function increase exponentially in higher-dimensional state
spaces, which increases the computational load. When
the state space is not densely sampled, the accuracy
drops; the only way to overcome this is to increase the
number of particles, which directly affects computation time.

C. Social Forces Model

The Social Force model is defined by the combination
of three different forces: personal motivation force, social
forces, and physical constraints.
Personal Motivation Force (FM

i ): This is the incentive to
move at a certain preferred velocity vi and in certain direction
di.
Social Forces (FS

i ): These are the repulsive forces from other
pedestrians P and obstacles O.
Physical Constraints (FP

i ): These are the hard constraints
other than the environment and other pedestrians.

FM
i = mi

vidi − ui
τi

(12)

FS
i =

∑
j∈P{i}

fSi,j +
∑
o∈O

fSi,o (13)

FP
i =

∑
j∈P{i}

fPi,j +
∑
o∈O

fPi,o (14)

where ui is present velocity, vi is preferred velocity, and mi

is the mass of pedestrian pi
The net force is FC

i = FM
i + FS

i + FP
i . (For a detailed

explanation of this method, refer to [13]). Our model tries
to estimate these individual forces and predict the future state
of each pedestrian in forthcoming frames.

We represent the state of each pedestrian as a six dimen-
sional vector:

x =

 p
v

vpref

 , (15)

where p is the agent’s position, v the velocity, and vpref is
the velocity, which typically points towards the pedestrian’s
goal. The crowd dynamics model f is:

f(

 p
v

vpref

) =

p + v∆t∫
FC

i dt
mi

vpref

 . (16)

Once we have the pedestrian state, we estimate the future
state via an iterative process, using the tracker data (which



Fig. 8: We compare AdaPT with other online trackers. The top graph represents the average fps achieved on our test machine.
The bottom graph represents the tracking accuracy. (Algorithms: Online Boosting [4], KMS [9], SMS [8], ASLA [14],
Frag [1], Kalman Filter [40]. Datasets: seq_hotel [27], seq_eth [27], zara01 [20], zara02 [20])

is noisy), the Social Forces motion model, and the error
distribution matrix E (Equation (6)). E is recomputed based
on the difference between the tracked state and the prediction
f(x) and will be used to refine our current estimation of
x. Once we have x, we convert this state to a Gaussian
probability distribution (Equation (7)) and calculate how
likely it is that our tracker follows our motion model.

V. RESULTS

In this section, we highlight the performance of our algo-
rithm on different benchmarks and compare the performance
with these prior techniques: Online Boosting [4], KMS [9],
SMS [8], ASLA [14], Frag [1], and Kalman Filter [40]. We
compare the accuracy (in terms of pedestrians successfully
tracked in the video sequence) and speed (frames per second)
on the following 4 datasets: BIWI Walking Pedestrians
dataset (seq_hotel and seq_eth) [27] and Crowds by example
(zara01, zara02) [20]. A track is counted as “successful”
when the estimated mean error between the tracking result
and the ground-truth value is less than 0.8 meter in ground
space.

We tested these algorithms on an Intel©Haswell, Core®i7-
4771 Processor (4 Cores) with an 8MB Cache, 3.90 GHz
and Intel©HD Graphics 4600. AdaPT is implemented in
C++, and some components use OpenMP and OpenCL to
exploit multiple cores.We adopted a agent-level parallelism:
individual pedestrian computations are distributed across
the CPU cores (except for the motion-model computations,
where pedestrian behavior is interlinked and tasks are highly
sequential).

TABLE I: Crowd Scenes used as benchmarks. We highlight
many attributes of these videos, along with the total number
of pedestrians.

seq_hotel Illumination Variations, Occlusion 390
seq_eth Background Variations, Illumination Changes 360
zara01 Background Variations, Illumination Changes, Occlusion 148
zara02 Background Variations, Illumination Changes, Occlusion 204

Fig. 9: AdaPT’s frame rate in this scene is 27 fps, tracking 14
pedestrians accurately in real-time. (Dataset CRW116: Web
Stock Footage from Collection “Pedestrians from above”)

VI. LIMITATIONS, CONCLUSIONS, AND FUTURE WORK

We present a realtime algorithm for pedestrian tracking in
crowded scenes. Our adaptive scheme provides high accuracy
and performance. We highlight its performance on well-
known pedestrian datasets; it can track crowded scenes with



tens of pedestrians at interactive rates on a PC with a multi-
core CPU.

Our approach has some limitations related to confidence-
estimation computation. If our estimate is overly conserva-
tive, the performance of the adaptive tracker will be close to
that of a probabilistic tracker. Errors in the motion model or
propagation reliability can impact the accuracy. In practice,
the performance of the algorithm can vary based on various
attributes of a video stream.

There are many avenues for future work. We would
like to evaluate our approach on other crowd scenarios
corresponding to input and output environments with varying
density and illumination conditions. The performance of
our approach can further improve by exploiting the parallel
capabilities of current systems to maximize data parallelism
and also implement our tracker on mobile platforms and
integrate with robots to perform autonomous navigation.

REFERENCES

[1] Amit Adam, Ehud Rivlin, and Ilan Shimshoni. Robust fragments-based
tracking using the integral histogram. In CVPR, pages 798–805, 2006.

[2] Saad Ali and Mubarak Shah. Floor fields for tracking in high density
crowd scenes. In ECCV, pages 1–14. 2008.

[3] Shai Avidan. Ensemble tracking. PAMI, pages 261–271, 2007.
[4] Boris Babenko, Ming-Hsuan Yang, and Serge Belongie. Visual

tracking with online multiple instance learning. In CVPR, pages 983–
990, 2009.

[5] Aniket Bera and Dinesh Manocha. Realtime multilevel crowd tracking
using reciprocal velocity obstacles. 2014.

[6] Michael D Breitenstein, Fabian Reichlin, Bastian Leibe, Esther Koller-
Meier, and Luc Van Gool. Online multiperson tracking-by-detection
from a single, uncalibrated camera. PAMI, pages 1820–1833, 2011.

[7] Shu-Yun Chung and Han-Pang Huang. A mobile robot that under-
stands pedestrian spatial behaviors. In IROS, pages 5861–5866, 2010.

[8] Robert T Collins. Mean-shift blob tracking through scale space. In
CVPR, pages 661–675, 2003.

[9] Dorin Comaniciu, Visvanathan Ramesh, and Peter Meer. Kernel-based
object tracking. PAMI, pages 564–577, 2003.

[10] Markus Enzweiler and Dariu M Gavrila. Monocular pedestrian
detection: Survey and experiments. PAMI, pages 2179–2195, 2009.

[11] Andreas Ess, Bastian Leibe, Konrad Schindler, and Luc Van Gool.
Robust multiperson tracking from a mobile platform. PAMI, pages
1831–1846, 2009.

[12] Tarak Gandhi and Mohan M Trivedi. Pedestrian protection systems:
Issues, survey, and challenges. ITS, pages 413–430, 2007.

[13] Dirk Helbing and Peter Molnar. Social force model for pedestrian
dynamics. Physical review E, 1995.

[14] Xu Jia, Huchuan Lu, and Ming-Hsuan Yang. Visual tracking via
adaptive structural local sparse appearance model. In CPVR, pages
1822–1829, 2012.

[15] Ming-Yi Ju, Chen-Sen Ouyang, and Hao-Shiu Chang. Mean shift
tracking using fuzzy color histogram. In ICMLC, pages 2904–2908,
2010.

[16] Zia Khan, Tucker Balch, and Frank Dellaert. An mcmc-based particle
filter for tracking multiple interacting targets. In ECCV, pages 279–
290. 2004.

[17] Marin Kobilarov, Gaurav Sukhatme, Jeff Hyams, and Parag Batavia.
People tracking and following with mobile robot using an omnidirec-
tional camera and a laser. In ICRA, pages 557–562, 2006.

[18] Louis Kratz and Ko Nishino. Going with the flow: pedestrian
efficiency in crowded scenes. In ECCV, pages 558–572. 2012.

[19] Junseok Kwon and Kyoung Mu Lee. Tracking by sampling trackers.
In ICCV, pages 1195–1202, 2011.

[20] Alon Lerner, Yiorgos Chrysanthou, and Dani Lischinski. Crowds by
example. In Computer Graphics Forum, pages 655–664, 2007.

[21] Yuan Li, Haizhou Ai, Takayoshi Yamashita, Shihong Lao, and Masato
Kawade. Tracking in low frame rate video: A cascade particle filter
with discriminative observers of different life spans. PAMI, pages
1728–1740, 2008.

[22] Z Li, QL Tang, and N Sang. Improved mean shift algorithm for
occlusion pedestrian tracking. Electronics Letters, pages 622–623,
2008.

[23] Wenxi Liu, Antoni B. Chan, Rynson W. H. Lau, and Dinesh Manocha.
Leveraging long-term predictions and online-learning in agent-based
multiple person tracking. 2014.

[24] Matthias Luber, Luciano Spinello, and Kai O Arras. People tracking
in rgb-d data with on-line boosted target models. In IROS, pages
3844–3849, 2011.

[25] Shaul Oron, Aharon Bar-Hillel, Dan Levi, and Shai Avidan. Locally
orderless tracking. In CVPR, pages 1940–1947, 2012.

[26] Sylvia Ounpuu. The biomechanics of walking and running. Clin
Sports Med, pages 843–863, 1994.

[27] Stefano Pellegrini, Andreas Ess, Konrad Schindler, and Luc Van Gool.
You’ll never walk alone: Modeling social behavior for multi-target
tracking. In ICCV, pages 261–268, 2009.

[28] Patrick Pérez, Carine Hue, Jaco Vermaak, and Michel Gangnet. Color-
based probabilistic tracking. In ECCV. 2002.

[29] Cédric Pradalier, Jorge Hermosillo, Carla Koike, Christophe Braillon,
Pierre Bessière, and Christian Laugier. The cyca b: a car-like robot
navigating autonomously and safely among pedestrians. Robotics and
Autonomous Systems, pages 51–67, 2005.

[30] Mikel Rodriguez, Ivan Laptev, Josef Sivic, and J-Y Audibert. Density-
aware person detection and tracking in crowds. In ICCV, pages 2423–
2430, 2011.

[31] Mikel Rodriguez and Josef et al. Sivic. Data-driven crowd analysis in
videos. In ICCV, pages 1235–1242, 2011.

[32] Juan C SanMiguel, Andrea Cavallaro, and José M Martínez. Stan-
dalone evaluation of deterministic video tracking. In ICIP, pages
1353–1356, 2012.

[33] Junji Satake and Jun Miura. Robust stereo-based person detection and
tracking for a person following robot. In ICRA Workshop on People
Detection and Tracking, 2009.

[34] Pramod Sharma, Chang Huang, and Ram Nevatia. Unsupervised
incremental learning for improved object detection in a video. In
CVPR, pages 3298–3305, 2012.

[35] Adrian FM Smith and Alan E Gelfand. Bayesian statistics without
tears: a sampling–resampling perspective. The American Statistician,
pages 84–88, 1992.

[36] Xuan Song, Xiaowei Shao, Quanshi Zhang, Ryosuke Shibasaki,
Huijing Zhao, Jinshi Cui, and Hongbin Zha. A fully online and
unsupervised system for large and high-density area surveillance:
Tracking, semantic scene learning and abnormality detection. TIST,
2013.

[37] Pete Trautman, Jeremy Ma, Richard M Murray, and Andreas Krause.
Robot navigation in dense human crowds: the case for cooperation.

[38] Ambrish Tyagi and James W Davis. A context-based tracker switching
framework. In WMVC, pages 1–8, 2008.

[39] Jur Van den Berg, Ming Lin, and Dinesh Manocha. Reciprocal velocity
obstacles for real-time multi-agent navigation. In ICRA, pages 1928–
1935, 2008.

[40] Shiuh-Ku Weng, Chung-Ming Kuo, and Shu-Kang Tu. Video object
tracking using adaptive kalman filter. Journal of Visual Communica-
tion and Image Representation, pages 1190–1208, 2006.

[41] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. Online object tracking:
A benchmark. pages 2411–2418, 2013.

[42] Fengliang Xu, Xia Liu, and Kikuo Fujimura. Pedestrian detection and
tracking with night vision. ITS, pages 63–71, 2005.

[43] Kota Yamaguchi, Alexander C Berg, Luis E Ortiz, and Tamara L Berg.
Who are you with and where are you going? In CVPR, pages 1345–
1352, 2011.

[44] Alper Yilmaz, Omar Javed, and Mubarak Shah. Object tracking: A
survey. Acm Computing Surveys (CSUR), 2006.

[45] Kaihua Zhang, Lei Zhang, and Ming-Hsuan Yang. Real-time com-
pressive tracking. In ECCV, pages 864–877. 2012.

[46] Xuemei Zhao, Dian Gong, and Gérard Medioni. Tracking using
motion patterns for very crowded scenes. In ECCV, pages 315–328.
2012.

[47] Brian D Ziebart, Nathan Ratliff, Garratt Gallagher, Christoph Mertz,
Kevin Peterson, James A Bagnell, Martial Hebert, Anind K Dey, and
Siddhartha Srinivasa. Planning-based prediction for pedestrians. In
IROS, pages 3931–3936, 2009.


