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Active Animations of Reduced Deformable Models with Environment
Interactions

ZHERONG PAN, University of North Carolina at Chapel Hill
DINESH MANOCHA, University of North Carolina at Chapel Hill

(a) (b) (c)

Fig. 1. Active deformable animations automatically generated by our approach: A letter T jumping (a), a spider walking (b), and a fish swimming (c). The
reduced configuration spaces of these deformable bodies have 5 − 15 DOFs. We present an efficient spacetime optimization formulation that takes into
account physics constraints and environmental interactions.

We present an efficient spacetime optimization method to automatically
generate animations for a general volumetric, elastically deformable body.
Our approach can model the interactions between the body and the environ-
ment and automatically generate active animations. We model the frictional
contact forces using contact invariant optimization and the fluid drag forces
using a simplified model. To handle complex objects, we use a reduced de-
formable model and present a novel hybrid optimizer to search for the local
minima efficiently. This allows us to use long-horizon motion planning to
automatically generate animations such as walking, jumping, swimming,
and rolling. We evaluate the approach on different shapes and animations,
including deformable body navigation and combining with an open-loop
controller for realtime forward simulation.

CCS Concepts: • Computing methodologies → Physical simulation;

Additional Key Words and Phrases: deformable body, optimal control, loco-
motion
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1 INTRODUCTION
Physically-based deformable animation is a well-studied problem in
computer graphics and related areas. Early methods such as [Müller
and Gross 2004; Terzopoulos et al. 1987] focus on passive anima-
tions using numerical simulations. These techniques are widely used
to generate plausible simulations of clothes [Bridson et al. 2002],
plants [Barbič and Zhao 2011], human tissues [Chentanez et al.

Permission to make digital or hard copies of all or part of this work for personal or
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2009], etc. Such passive animations are frequently used in movies
and games to increase the realism. On the other hand, generating
controlled or active deformable body animations [Coros et al. 2012;
Kim and Pollard 2011; Tan et al. 2012] is considered more challeng-
ing, especially when a deformable body’s movements are governed
by physics-based constraints. In such cases, additional control in-
puts, such as keyframes or rest shapes, need to be determined based
on a deformable body’s interactions with the environment in order
to generate the animation. This can be computationally challenging
for deformable bodies with a high number of degrees of freedom
(DOFs). To simplify the problem, previous methods [Hahn et al. 2012;
Harmon and Zorin 2013; Kim and James 2011; Liu et al. 2013; Xu and
Barbič 2016] partition the deformable body’s DOFs into controlled
DOFs and uncontrolled DOFs. In practice, prior techniques specify
the trajectories of controlled DOFs using manual keyframes and
use physics-based simulation algorithms to generate movements
corresponding to uncontrolled DOFs, i.e., the secondary dynamics.
Such techniques are widely used for physical character rigging. In
general, it is hard to generate controlled deformable body anima-
tions without user intervention or specifications. The animators not
only need to manually partition the DOFs into controlled DOFs and
the uncontrolled DOFs, but they also need to specify the movements
of the controlled DOFs.

Main Results: We present a new method for active deformable
body animations. The input to our method is a volumetric mesh
representation of the body, a specification of the environment, and
a high-level objective function that is used to govern the object’s
movement. Our algorithm can automatically compute active an-
imations of the deformable body and can generate motions cor-
responding to walking, jumping, swimming, or rolling, as shown
in Figure 1. We compute the animations using a novel spacetime
optimization algorithm and formulate the objective function taking
into account dynamics constraints as well as various interactions
with the environment. These include collisions, frictional contact
forces and fluid drag forces. Compared with keyframe-based meth-
ods, we use objective functions to control the animation. In practice,
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these objective functions are more general and easier for the user to
specify. For example, to generate walking animation, user can just
specify the target walking speed, instead of manually specifying the
walking poses corresponding to different timesteps. Furthermore,
our approach can be easily combined with partial keyframe data to
provide more user control.
Some of the novel components of our work include:
• A spacetime optimization formulation based on reduced de-
formable models (Section 4), that takes into account environ-
ment interactions.
• A hybrid spacetime optimization algorithm (Section 5), which
is more than an order of magnitude faster than previous
spacetime optimization methods.
• We combine our spacetime optimization algorithm with dy-
namic movement primitives (DMP), which have been used
in robotics [Schaal 2006]. DMP improves the performance
of our algorithm in terms of avoiding suboptimal solutions.
Furthermore, we present a two-stage animation framework.
During the first stage, we compute the animation trajectories
using DMP as a prior. These animations are then tracked and
composed together at realtime using DMP as a controller
(Section 6).

We demonstrate the benefits of our method by evaluating its per-
formance on different complex deformable bodies with thousands of
vertices and 5 − 15 DOFs in different environments (Section 6). For
underwater swimming, we use DMP as an open-loop controller to
generate realtime swimming animations (Figure 12). For contact-rich
locomotion, the optimized animations are tracked at realtime using
a feedback controller (Figure 19). Finally, we formulate keyframe-
based control as a special case of our method and show animations
controlled using partial keyframes and high-level control objectives
(Figure 18).

2 RELATED WORK
Our work is inspired by prior work on passive/active deformable
body animations and model reduction. In this section, we give a
brief overview of related work.
Passive Deformable Body Animation has been an active area

of research for more than three decades. The most popular de-
formable model, especially for deformable bodies without skeletons,
is the finite element method (FEM) [Irving et al. 2006; Terzopou-
los et al. 1987]. These methods of deformable body modeling have
computational complexity that is superlinear in the number of dis-
crete elements, and they therefore are not suitable for interactive
applications. Many deformable bodies such as human bodies and
animals have embedded rigid skeletons. Robust methods such as
[Capell et al. 2002; Hahn et al. 2012; Kim and Pollard 2011] have
been proposed to model skeletons’ interactions with soft tissues. In
this paper, we use FEM to model a deformable body.
Active Deformable Body Animation is used by animators or

artists to direct the animation while satisfying the physics-based
constraints. Early works in this area [Barbič et al. 2009, 2012; Bergou
et al. 2007; Schulz et al. 2014] try to make the deformable body follow
a user-provided animation by applying external forces. However,
deformable bodies in real life, such as worms, snakes, and fishes,

can only move themselves by generating internal forces. To respect
this property, [Coros et al. 2012; Kim and Pollard 2011; Tan et al.
2012] control virtual deformable bodies to follow a given animation
by applying internal forces only. Our work can be considered as
complimentary to these methods. We generate animations that can
be used as input to these previous methods, with a focus on reduced
deformable models. Deformable body control methods can also be
categorized based on the underlying user interfaces: [Barbič et al.
2009, 2012; Bergou et al. 2007; Kim and Pollard 2011; Schulz et al.
2014] require the user to specify a set of spacetime keyframes, while
[Coros et al. 2012; Tan et al. 2012] and our approach specify the
goals for controlling the animation using objective functions. We
further show that conventional keyframe-based user-interface can
be incorporated into our system using additional objective functions.

SpacetimeOptimizationMany techniques for deformable body
animations are based on spacetime optimization [Witkin and Kass
1988]. Solving these optimization problems can be challenging due
to the high-dimensional search space. Some algorithms param-
eterize the search space using low-dimensional representations
such as splines [Hildebrandt et al. 2012] and functional spaces
[Mukadam et al. 2016]. Another challenging issue is handling of
non-smoothness constraints in the optimization formulation, due to
environment interactions corresponding to collisions and contacts.
Previous work either use sampling-based methods [Xu and Bar-
bič 2016], complementarity constrained optimizations [Peng et al.
2017], or a smooth variant of the contact model [Mordatch et al.
2012, 2013]. In our work, we handle the high-dimensionality using
reduced deformable models. We optimize the environmental forces
by using or developing smooth variants of contact and fluid drag
force models. Finally, we solve the optimization problem using a
hybrid method.

Model Reduction is a practical method for fast deformable body
simulations. It is based on the observation that only visually salient
deformations need to be modeled. The earliest reduced model is
based on Linear Modal Analysis (LMA) [Hauser et al. 2003; Pentland
and Williams 1989], which is only accurate for infinitesimal defor-
mations. Methods for non-linear and large deformations have been
proposed in [An et al. 2008; Barbič and James 2005; Choi and Ko
2005]. In this paper, we use the rotation-strain space dynamic model
[Pan et al. 2015] because it can preserve the key characteristics of
deformable bodies with a lower-dimensional configuration space
representation. However, our method can also be used with other
reduced dynamic models.

3 PROBLEM FORMULATION
In this section, we formulate the problem of generating deformable
body animation as a spacetime optimization. Our method searches
in the space of deformable body animations with a fixed number ofK
timesteps. We denote an animation trajectory as: QK =

(
q1 · · · qK

)
,

where each state vector qi uniquely determines the position of a
deformable body at time instance i∆t , where ∆t is a fixed timestep
size.

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2017. 2018-03-17 02:32 page 2 (pp. 1-17)



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Active Animations of Reduced Deformable Models with Environment Interactions • 1:3

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

v j (0)

u

c

w

v j (q)
(a)

(b) (c) (d)

Fig. 2. The deformable body is represented as a triangle mesh (a). With a
deformation bases set (b), its position is parameterized by local deforma-
tion u , a global rigid translation c (c), and rotation w (d). The Euclidean
coordinates of jth vertex v j (blue dot) can be recovered by transformation
function v j (q).

3.1 Input & Output
In Section 5, we present an efficient optimizer to robustly search for
the animation trajectory QK by solving the following problem:

argmin
QK ,F,E

E(QK ,F , E),

where, besides the animation trajectory QK , we also search for the
internal forces (F ) and external forces (E ) on the deformable body
at every time instance. Our overall algorithm takes the following
components as an input:
• A volumetric mesh representation of the deformable body
with V vertices

(
v1 · · · vV

)
.

• A specification of the environment, including type of the
environment (in water, or on the ground) and parameters
of the environment (e.g., drag force coefficient in water, or
contact friction coefficient on the ground).
• The form of high level objective Eobj and its parameters. For
example, in order for a deformable body to walk to a tar-
get position, Eobj will penalize the distance between current
center of mass c and the target position, and its parameters
correspond to the target position’s coordinates.

3.2 Objective Function for Spacetime Optimization
By spacetime optimization, we assume that the desired deformable
body animation corresponds to the local minima of an objective
function. As a result, this objective function must encode all the
requirements for a physically correct and plausible deformable body
animation. We model these requirements by taking four different
energy terms into account in E(QK ):

E(QK ) = Ephys + Eobj + Eenv + Ehint. (1)
As outlined in Figure 3, the first term Ephys models all the shape
changes that occur within the deformable body, i.e., the dynamics
that result from the internal forces. It penalizes any violation in the
deformable body’s equation of motion (Section 4.1.1) and any colli-
sions between different parts of the deformable body (Section 4.1.2).
The second term Eobj is a task-dependent objective function spec-
ified by user (see Section 3.1). The environmental force term Eenv
(Section 4.2) models all the dynamic interactions between the de-
formable object and the environment, i.e. due to the external forces.
It also penalizes any violation in the constraints that the environ-
mental forces, such as frictional contact forces, must satisfy. Finally,

obj

envhint

phys

Fig. 3. We highlight various components used in our spacetime optimization
algorithm that can also be used for animation tracking and controlled
forward animation.

the last term Ehint (Section 4.3) guides the optimizer to avoid local
minima that may result in less plausible animations.

3.3 Configuration Space Parametrization
Although our method can work with any parametrization of the
deformable body’s configuration q, different parametrizations re-
sult in drastically different computational cost. A straightforward
method is to use volumetric meshes with V vertices

(
v1 · · · vV

)
and define q as all the vertices’ Euclidean coordinates. In this case,
the dimension of the configuration space, |q |, scales linearly with
the number of vertices and may be several thousands for moder-
ately complex deformable models. Using optimization algorithms in
such a large search space is only practical for very short animations.
Indeed, [Bergou et al. 2007; Tan et al. 2012] used this vertex-based
parametrization for tracking deformable body animation in a frame-
by-frame manner, i.e., K = 1.
Instead, we represent the configuration of a deformable body

using a rigid-coupled reduced model defined as:
q =

(
u c w

)T
, (2)

whereu parametrizes the deformable body’s non-rigid deformations
in its local frame of reference. This is complemented with a rigid
transformation in the world coordinates parametrized using a global
translation c and rotation w , as illustrated in Figure 2. By using a
precomputed dataset of deformation bases, the dimension of local
deformation |u | in Equation 2 is usually no more than 20. Moreover,
methods such as cubature approximation [An et al. 2008] and fast
sandwich transform (FST) [Kim and James 2011] can be used to
efficiently recover a vertex v j ’s Euclidean coordinates using the
transformation function v j (q). This transformation function can
take a different form depending on the underlying reduced dynamic
models. We refer readers to Section 6.2 for more analysis in terms of
combining our method with different reduced dynamic models. A
widely-known model is the reduced StVK [Barbič and James 2005].
Instead, we use the recently proposed rotation-strain (RS) space dy-
namic model [Pan et al. 2015] because it achieves comparable results
with a lower-dimensional configuration space, i.e., a smaller |u |. We
provide the details about the computation of v(q) in Appendix C .
We denote the reconstructed Euclidean coordinates representation
as:

q̄(q) =
(
v1(q)v2(q) · · · vV (q)

)T
.

These formulationsmake it computationally tractable to numerically
optimize a complex nonlinear function E(QK ). Moreover, Equation 2
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is very convenient in terms of formulating our objective functions
Eobj. For example, we could use a function in c to direct a deformable
body to walk to a specific position, or a function inw to specify that
a deformable body should stay balanced.

4 OBJECTIVE TERMS
In this section, we present details of the objective function used for
spacetime optimization.

4.1 Physics-Based Constraints
The first term Ephys penalizes any violation of the equations of
motion (EOM), and our formulation is similar to prior work [Barbič
et al. 2009, 2012]. In addition, we also penalize any self-penetrations
or collisions with static obstacles. Altogether, Ephys is represented
as:

Ephys(QK ) =
K−1∑
i=2

EEOM(qi−1,qi ,qi+1) + Ecoll(qi ) + Eself(qi ).

4.1.1 Equations ofMotion. Sinceqi only represents a deformable
body’s position, EEOM models the dynamic behavior using 3 con-
secutive frames. One advantage of this formulation is that we can
use a position-based large timestep integrator [Hahn et al. 2012]
to formulate our EOM. An implicit-Euler scheme determines qi+1
from qi−1,qi using the following optimization formulation:

qi+1 = argmin
q

[
A(q)TMA(q)

2∆t2 + P(q) − FTi u − ETi q̄(q)
]

A(q) ≜ q̄(q) − 2q̄(qi ) + q̄(qi−1),
whereM is the mass matrix constructed from the volumetric mesh
of the deformable body using FEM, F represents the internal con-
trol forces and E corresponds to the environmental forces such as
gravitational forces, fluid drag forces, and frictional contact forces.
P is the elastic potential energy, and we model this energy term
using the rotation-strain space linear elastic energy P(q) = uTKu/2,
where K is the isotropic stiffness matrix. Even with an arbitrarily
large ∆t , the above time integrator is always stable. The term EEOM
is simply defined as the norm of gradient:

EEOM(qi−1,qi ,qi+1) =
1
2 (3) ∂q̄(qi+1)

∂q

T
MA(qi+1) +

∂
[
P(qi+1) − Fi

Tui+1 − Ei
T q̄(qi+1)

]
∂q


2

,

where we exclude internal forces Fi and external forces Ei from
our argument list to save space. These forces can be functions of qi ,
eliminated analytically, or optimized as separate subproblems.

4.1.2 Collision Avoidance. Collision handling is regarded as a
challenging problem in terms of deformable body simulation. In our
method, we use two terms to approximately avoid collisions. For
collisions with static obstacles, we formulate an energy term as:

Ecoll(q) =
Ccoll

2

V∑
j=1

max(dist(v j (q)), 0)2, (4)

where dist(v) is the signed distance from a vertex’s position to static
obstacles, which is positive when there is penetration and negative

otherwise. To evaluate this function for vertices, we precompute a
signed distance field for the static obstacles.

Handling self-collisions is even more challenging. In order to gen-
erate animations such as walking and jumping, many deformable
bodies have thin structures that function as legs. Successful han-
dling of self-collisions between such thin structures usually requires
continuous collision detection (CCD), as illustrated in Figure 4. We
make use of our reduced representation and use an approximate
CCD scheme. Given a configuration q =

(
u c w

)
that has self-

penetrations, we first search for colliding pairs of vertices by recon-
structing q̄(qi ) from qi and run a conventional discrete collision de-
tection.

(a) (b)

Fig. 4. To resolve collisions between
thin components (a), we use approxi-
mate continuous collision handling (b).

As shown in [Barbič and James
2010], considering only vertex-
vertex collisions is enough
for plausible handling of self-
penetrations in reduced-model
deformable body animations.
Moreover, we observe that self-
penetrations are invariant to
the global rigid transformation(
c w

)
, so we only look at the

local deformation component
u of q. Since we already know
that the undeformed configu-
ration, i.e., u = 0, has no self-collisions, we can use a line-search
algorithm in u to find the largest η ∈ (0, 1] such that ηu has no
self-collisions. We can then approximate the direction of separation
as:

dab ≜
va (ηu) −vb (ηu)
∥va (ηu) −vb (ηu)∥

,

this direction is treated as a fixed vector in each iteration of opti-
mization, i.e. its derivatives are ignored. Finally, for each pair of
vertices va (u) and vb (u) in collision, we add an energy term:

Eabself(u) = max((vb (u) −va (u))Tdab , 0)2,
and Eself is then defined as:

Eself(u) =
Cself

2

V∑
a=1

V∑
b=1

Eabself(u)I
ab , (5)

where the last Iab is an indicator of whether va (q) and vb (q) are in
collision.

4.2 Environmental Force Model
Since we allow only internal forces F as the control input, a de-
formable body must make use of external environmental forces E
to move around. We consider two kinds of environmental forces:
frictional contact forces and fluid drag forces. The frictional contact
forces are used for generating contact-rich animations such as walk-
ing, balancing, rolling or jumping. The fluid drag forces are used for
underwater swimming.

4.2.1 Frictional Contact Force Model. To model the frictional
contact forces, we use contact invariant optimization (CIO) [Mor-
datch et al. 2012, 2013] and leave external forces E as an additional
optimizable variable. However, E must satisfy two additional con-
straints. First, the contact force on vertex v j , E j should lie inside
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the frictional cone, we have:
∥E ji ∥ ∥ ≤ µE ji ⊥, (6)

where ∥ and ⊥ are the tangent and normal component of the con-
tact force, respectively, and µ is the frictional coefficient. The big
advantage of CIO is that it allows the optimizer to jointly search for
both contact forces and contact points by introducing the so-called
contact-integrity term defined as:

Eenv(qi ,qi−1, E ji ) = Cenv
K∑
i=2

V∑
j=1

(7)

(∥dist(v j (qi ))∥2 + ∥(v j (qi ) −v j (qi−1))∥ ∥2)∥E
j
i ∥

2.
This term essentially encourages every external force E to have
maximal velocity dissipation and every contact point to stay on the
contact manifold. In this work, we use a slightly different formu-
lation from [Mordatch et al. 2013] and use a quadratic penalty for
E . In this way, the objective function E(QK ) becomes a quadratic
function when we are optimizing only with respect to E . Together
with Equation 6, we can find the optimal E , given QK , by solving
a quadratic constrained QP (QCQP) problem. In Equation 7, the
function dist(•) returns the closest distance to the environmental
obstacles. We compute this efficiently by precomputing a distance
field for the environment and we then use a smoothing algorithm
[Calakli and Taubin 2011] so that dist(•) is C1-continuous.

4.2.2 Fluid Drag Force Model. The fluid drag forces, Ei , are not
free variables but functions of qi ,qi−1. [Yuksel et al. 2007] used
a quadratic drag force model, which is defined as a summation
of forces on each triangular surface patch (va ,vb ,vc ). Similar to
the case with elastic energy, this quadratic drag force model has a
corresponding potential energy defined follows:

ETi q̄ = E
T (qi+1,qi )q̄(qi+1) = Cdrag

∑
va,b,c

P
drag
abc (8)

P
drag
abc (qi ,qi−1) ≜ max(NT

abcUabc , 0)U
T
abcBabc (qi+1),

where we have also approximated the surface patch force as a point
force on the barycenter Babc . Here Nabc is the area-weighted nor-
mal andUabc is the barycenter’s relative velocity against fluid, as
illustrated in Figure 5. Note that Equation 8 only takes effect when a
surface patch is moving towards the fluid body. However, Equation 8
cannot be used by a gradient-based numerical optimizer because
the gradient is discontinuous. We propose a continuous model by a
slight modification:

P
drag
abc (qi ,qi−1) ≜ max(NT

abcUabc , 0)
2 N

T
abcBabc (qi+1)
∥Nabc ∥2 + ϵ

,

which is C1-continuous, and we set ϵ = 10−6 to avoid degeneracy.
This newmodel only relates drag forces with the normal component
of the relative velocity. Since no other constraints or conditions are
imposed on E , we define Eenv = 0 for the fluid drag model.

4.3 Controller Parametrization and Shuffle Avoidance
The two terms, Ephys,Eenv, cannot uniquely determine an anima-
tion. Therefore, we add two terms that model the prior knowledge
in plausible character animations: controller parametrization and
shuffle avoidance.
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(a) (b) (c)

Fig. 5. Fluid drag force is applied on each surface patch (va, vb, vc ). The
force strength depends on the surface normal N and relative velocity U (a).
We also plot the force strength with respect to tangential relative velocityU∥
and normal relative velocity U⊥. Our new formulation is C1-continuous (b),
while the original formulation has a discontinuous gradient (c), especially
when the relative velocity is almost tangential (shown with a red rectangle).

Fig. 6. A letter T jumping forward. With DMP regularization term EDMP,
its center of mass (blue) traces out a periodic trajectory.

4.3.1 Periodic and Temporal Smoothness. First, we notice that
for several kinds of animations, including walking, swimming, and
rolling, the deformable body should move in a periodic manner.
Moreover, the desired animation is temporally smooth.

Algorithm 1 Algorithm to update CDMP.

1: Evaluate A← ∑K−1
i=2 EEOM(qi−1,qi ,qi+1)

2: Evaluate B ← ∑K−1
i=2 ∥F

j
i − DMP(i∆t ,Wj )∥2

3: if B > 0.1A then ▷ Control input does not match DMP
4: CDMP ← 2.1CDMP ▷ Enforce better match
5: end if
6: if B < 0.01A then ▷ Control input matches DMP
7: CDMP ← 0.5CDMP ▷ Allow more animation explorations
8: end if

To respect this property, we use a general representation: Dy-
namic Movement Primitives (DMP) [Schaal 2006] to parameterize
the control inputs. DMP is a special open-loop controller parametriza-
tion that can represent many complex robotic tasks such as tennis
playing and walking. DMP is capable of representing both peri-
odic and non-periodic tasks. The latter is useful, e.g., for jumping
animations. A periodic DMP controller is defined as:

DMPp (t ,W) =
N∑
n=1

αnexp(β2
ncos(τ t − µn )), (9)

and a non-periodic DMP controller is defined as:

DMPnp (t ,W) =
N∑
n=1

αnexp(−(βnt − µn )2)t . (10)

Note that DMP can be considered a special kind of one-input-one-
output neural network using exp() and cos() as the activation func-
tion, where N is the number of neurons in each layer and the

2018-03-17 02:32 page 5 (pp. 1-17) ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2017.



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

1:6 • Pan, et al

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

neural-net weights areW ≜ (αn , βn , µn ,τ ). In practice, we need
one DMP function for each component of Fi so that the total number
of additional variables to be determined is |W| × |Fi | = |W| × |u |.
We denote the DMP for the jth component of Fi using superscript
j . In order to guide the optimizer to look for control inputs that can
be represented using DMP, we introduce an additional energy term:

EDMP(Fi ) =
CDMP

2

|Fi |∑
j=1
∥F j

i − DMPp/np (i∆t ,Wj )∥2. (11)

We simultaneously optimize QK andWj . We also adaptively ad-
just the weighting of this term so that EDMP is almost zero after
the iterative algorithm converges. As a result, the output of DMP
function DMPp/np matches the required internal control forces F j

i
exactly and DMPp/np can be used as an open-loop controller af-
ter spacetime optimization. To achieve such exact match between
F j
i and DMPp/np , we use a simple adaptive penalty method [Boyd

et al. 2011]. Specifically, we use Algorithm 1 to adjust CDMP after
every iteration of optimization. Our scheme allows the optimizer
to quickly explore the space of new animations, while keeping
∥F j

i − DMP(i∆t ,Wj )∥2 small. Figure 6 illustrates the effect of this
heuristic term.

4.3.2 Shuffle Avoidance. As observed in [Mordatch et al. 2013],
another artifact due to the lack of internal actuation structure is
the shuffling movement across the contact manifold. This means
that the contact points are always in close proximity to the solid
boundary. To mitigate this artifact, we introduce an additional hint
term Eshuffle defined as:

Eshuffle(qi ,qi−1) (12)

= Cshuffle

V∑
j=1
∥(v j (qi ) −v j (qi−1))∥ ∥2exp(−γdist(v j (qi ))),

where γ is the distance attenuation coefficient. For each vertex v j ,
we penalize its tangential velocity attenuated by its distance from
static obstacles. In this way, the shuffling artifact is removed by
asking a walker to lift its legs to move forward. The effect of this
hint term is illustrated in Figure 7. We combine the above two hints
and Tikhonov regularization, giving:

Ehint(QK ) =
K−1∑
i=2

Creg
2 ∥Fi ∥

2 + Eshuffle(qi ,qi−1) + EDMP(Fi ). (13)

5 SPACETIME OPTIMIZATION
In this section, we present our efficient, hybrid optimizer tominimize
the objective function:

argmin
QK ,F,E,W

E(QK ,F , E ,W), (14)

where different subproblem solvers are used for minimizing with
respect to each of the 4 free variables: QK ,F , E ,W. As a special
case, E is not a free variable for swimming animations using our
fluid dragmodel.Without loss of generality, we consider Equation 14
for presentation. Since the objective function is C1-continuous, our
first attempt was to use an off-the-shelf implementation of the
LBFGS algorithm [Liu and Nocedal 1989]. However, we found out
that even for small problems, having very small |u | and K , it takes
a large number of iterations to converge. Instead, we present a

Algorithm 2 The hybrid optimization algorithm.
1: ▷ Setup multiple initial guesses for DMP periods
2: 2π/τ ← 0.2, 0.4, · · · , 5(s)
3: for iteration=0, · · · do
4: ▷ Evaluate function values and gradients
5: Evaluate E(QK ), ∂E(QK )

∂QK
6: Evaluate an approximation to ∂2E(QK )

∂QK 2 denoted as H
7: ▷ Update trajectory, see [Lourakis 2005] for more details
8: do
9: QnewK ← QK − (H + dI)−1 ∂E(QK )

∂QK
10: if E(QnewK ) > E(QK ) then
11: increase d
12: else
13: decrease d
14: end if
15: while E(QnewK ) > E(QK )
16: QK ← QnewK
17: ▷ Update contact forces (Equation 3,6,7)
18: if Using frictional contact model then
19: for i = 2, · · · ,K − 1 in parallel do
20: Update Ei using [Todorov 2011]
21: end for
22: end if
23: ▷ Update DMP weights for all initial guess (Equation 11)
24: ifW is not updated in the last 10 iterations then
25: for Each initial guess do
26: Update DMP weightsW using 1000
27: iterations of LBFGS [Liu and Nocedal 1989]
28: end for
29: ChooseW leading to smallest EDMP
30: end if
31: if Using frictional contact model then
32: ▷ Adaptive contact handling (Equation 7, 12)
33: for all 1 ≤ i ≤ K and 1 ≤ j ≤ V do
34: if dist(v j (qi )) > ϵ1 and ∥E ji ∥ < ϵ2max

i, j
∥E ji ∥ then

35: Exclude v j (qi ) from Eenv,shuffle
36: else
37: Include v j (qi ) in Eenv,shuffle
38: end if
39: end for
40: end if
41: end for

novel hybrid optimization algorithm that converges in much fewer
iterations.

5.1 Hybrid Optimizer
To accelerate the rate of convergence, we first notice that F appears
only in EEOM, and EDMP as a quadratic function. Therefore, we can
solve for F analytically and eliminate it. We further observe that
the other three sets of variables (QK , E ,W) appear in the objective
function with special structures. The DMPweight vectorW appears
only in EDMP and optimizingW amounts to a small neural-network
training problem for which LBFGS is proven to be very effective.
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Example LBFGS(s) Hybrid(s)
2D Crawling 1534 18
2D Rolling 823 12

Table 1. Performance of LBFGS and our hybrid solver on two examples: 2D
worm crawling and 2D ball rolling. Our approach is significantly faster.

(a)

(b)

Fig. 7. Frames highlighting the dragon walking trajectory using our ap-
proach. In the result without Eshuffle (a), the dragon’s foot is always in close
proximity to the floor plane (blue). The artifact is mitigated using Eshuffle
(b). Therefore, we observe more secondary dynamics in (b), e.g., around the
tail (green).

The external force E is a quadratic function in both EEOM and Eenv,
and Ei for each timestep i is separable and can be solved in parallel.
Together with constraint Equation 6, finding the optimal E amounts
to solving a QCQP problem, for which special solvers are known. For
example, we use a primal interior-point method [Todorov 2011]. We
found that solving QCQP is faster than solving QP with a linearized
frictional model because it requires fewer constraints and makes use
of coherence in the intermediate solutions between the consecutive
iterations by allowing warm-starting. We can update these variables
W, E , and QK in an alternate manner. Finally, for trajectory QK
itself, LBFGS can still be used, but we found that LBFGS does not
use gradient information effectively. A large number of gradient
evaluations are performed inside the line-search scheme and LBFGS
usually chooses a conservative step size. Therefore, we choose the
Levenberg-Marquardt (LM) method for updating QK . The outline
of our method is given in Algorithm 2, and we provide the low-level
details in Appendix B . Table 1 shows a comparison between our
solver and LBFGS on two small 2D problems.

5.2 Efficient Function Evaluation
The costliest step in our algorithm is the evaluation of the function
values, including the gradient and approximate hessian. We com-
bine several techniques to accelerate these evaluations. First, we
notice that v j (qi ), the recovered vertex j’s Euclidean coordinates
from reduced representation at timestep i , appears in almost ev-
ery objective term. Moreover, these values are independent of each
other. Therefore, we can compute and store v j (qi ), ∂v j

∂qi
, ∂2v j

∂qi 2 for
all 1 ≤ i ≤ K and 1 ≤ j ≤ V in parallel, before each evaluation. We
provide some hints for computing the second derivatives ∂2v j

∂qi 2 in
Appendix C . The overhead of these computations is independent
of the number of vertices V . We also utilize this information to
assemble the hessian. This assembly step can be a computational

(a) (b) (c)

Fig. 8. For the spider (top) and fish (bottom) models (a), we visualize the
kinetic cubatures (b) and surface patch cubatures (c). In both cases, only a
small fraction of elements need to be considered for the summation. This
fraction is 12% for the spider and 0.7% for the fish model.

bottleneck because we have to evaluate the summations over all
the vertices that appear in the physics violation term EEOM, in the
collision avoidance term Ecoll,self, in the environmental force term
Eenv, and finally in the shuffle avoidance term Eshuffle.

5.2.1 Accelerating the Assembly of Ecoll,self. For collision avoid-
ance terms, only very few vertices will contribute non-zero values
to the objective function. Therefore, we use a bounding volume
hierarchy [James and Pai 2004] to update the non-zero terms. This
data-structure can be updated solely using reduced representation
|q |, and the update for different timesteps can be performed in par-
allel.

5.2.2 Accelerating the Assembly of Eenv,shuffle. In the previous
section, we used cubature approximation to accelerate the fluid
drag forces. For frictional contact forces, however, all the vertices
in close proximity to the static obstacles will contribute non-zero
values to Eenv and Eshuffle. Since these vertices cannot be determined
during the precomputation stage, we dynamically update them.
Specifically, we remove vertex v j (qi ) from Eenv if dist(v j (qi )) > ϵ1
and ∥E ji ∥ < ϵ2max

i, j
∥E ji ∥. After Eenv is updated, we update Eshuffle

accordingly, since Eshuffle is also very small for vertices that are far
from the static obstacles. These updates can be accelerated using a
bounding volume hierarchy.

5.2.3 Accelerating the Assembly of EEOM. [An et al. 2008; Barbič
and James 2005] have addressed the problem of accelerating the
assembly of EEOM. Specifically, summation over all vertices appears
in two places of EEOM highlighted below:

∂q̄(qi+1)
∂q

T
MA(qi+1) +

∂

[
P − Fi

Tu − Ei
T q̄

]
(qi+1)

∂q
.

We use the cubature approximation [An et al. 2008] to accelerate
these two terms. The blue part above corresponds to the kinetic
cubature used in [Pan et al. 2015]; see Appendix C.2 for more details.
The red part above corresponds to the fluid drag force, which is a
summation over all the surface patches. Cubature approximation
assumes that:
ET (qi+1,qi )q̄(qi+1) = Cdrag

∑
va,b,c

P
drag
abc ≈

∑
va,b,c ∈T

CabcP
drag
abc , (15)

i.e., the sum over all surface patches can be approximated using the
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weighted sum of a selected set of surface patches T . As illustrated
in Figure 8, this greatly reduces the computational overhead.
The set T and weights Cabc are computed via dictionary learn-

ing. Specifically, we first construct a dataset of D exemplary de-
formations {q1,q2, · · · ,qD } according to Gaussian distribution as
described as in [An et al. 2008]. Then for each pair of qi ,qi+1, we
compute the groundtruth fluid drag force. The problem of finding
T and Cabc is formulated as the following sparse coding problem:

argmin
Cabc

∥Cabc∥0 +
D−1∑
i=1
∥

∑
va,b,c

∂
[
CdragP

drag
abc −CabcP

drag
abc

]
∂qi+1

∥2

s.t. Cabc ≥ 0, (16)

which is solved using iteratively reweighted Lasso optimization as
in [Pan et al. 2015]. We take partial derivative in Equation 16 so that

we are measuring error in drag force ∂P drag
abc
∂q , instead of the corre-

sponding potential energy P
drag
abc . Finally, T consists of all surface

patches with non-zero Cabc.

5.3 Robustness to Suboptimal Solutions
It is well-known that spacetime optimization is prone to bad local
minima leading to suboptimal solutions, except for simple cases
[Barbič et al. 2012]. In our algorithm, there are two energy terms
that can result in the computation of bad local minima. One is the
contact integrity term, Eenv, which models the non-smoothness
of frictional contacts. The other one is EDMP, which models the
trajectory smoothness and periodic movements.
In terms of EDMP, previous methods [RÃĳckert and D’Avella

2013; Schaal 2006] use sampling-based methods to search for the
global optimum. Since we only use a gradient-based local optimizer,
EDMP could result in the computation of a bad local minima. In-
deed, we found that our optimizer can have difficulty in terms of
finding good DMP parametersW. At a local minima, several DMP
neurons usually have same values of (αn , βn , µn ), values in Equa-
tion 9 or Equation 10, meaning that we are wasting parameters. In
addition, we found that the period parameter τ can get stuck in
a local minima very close to our initial guess. In this section, we
introduce some simple modifications to overcome these problems.

Fig. 9. When user sets a target point
(green) too far away (5 meters to the
right) and uses very few timesteps (20
in this case), the Letter T chooses to lean
itself too much to recover from falling
down.

We first initialize the phase
shift uniformly in the phase
space, i.e., µn = 2πn/N , and
we initialize αn , βn to very
small random values. To avoid
the period parameter τ falling
into a bad local minima, we
use multiple initial guess for
τ and run an LBFGS optimiza-
tion from each initial guess
in Line 25 of Algorithm 2.
In our experiments, we set
2π/τ = 0.2, 0.4, · · · , 5(s) and
run LBFGS 25 times very 10 iterations to avoid bad local minima.
After that, we get 25 candidate DMP parameters,W, and we choose

the candidate leading to the smallest EDMP. Such multiple LBFGS op-
timizations will result in additional computational overhead during
the first few iterations of optimization. As the optimizer gets closer
to a local minima, τ will converge to a same local minima for several
candidates of DMP parameters, and we can merge these candidates
into one. In addition, if a certain candidate is never chosen as the
best during the last 100 iterations, we remove this candidate from
further consideration. In practice, we have only 2 − 3 remaining
candidates after 500 iterations.
The approach highlighted above greatly increases the chances

that our optimization algorithm computes a good local minima with-
out significant computational overhead. This is because periodic
DMP formulation (Equation 9) is guiding the whole trajectory to
follow a same gait. When our optimization algorithm finds a useful
gait, this information is quickly encoded into the DMP controller
and reused to compute the entire trajectory using the EDMP formu-
lation. In order to highlight this feature, we show two swimming
trajectories computed using our optimization algorithm. In order
to compute the trajectory shown in Figure 10 (a), we initialize the
spider pose to u = c = w = 0 at all timesteps. While to generate
Figure 10 (b), we initialize the spider to a different random pose
at every timestep. Moreover, the convergence history of these two
optimization schemes are plotted in Figure 11. Our optimizer con-
verges to two different but almost equally effective swimming gaits
with very small objective function values. This means that although
there are numerous local minima, most of them leads to plausible
animations. However, bad local minima can still happen especially
in contact-rich animations and we illustrate one such failure case
in Figure 9.
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Fig. 10. We show two swimming trajectories optimized using static ini-
tialization (a) and random initialization (b). For both trajectories, we plot
the locus of the deformable body’s center of mass (white curve) and the
magnitude of control forces in (c,d). The goal is to move 5 meters to the
left after 10 seconds. Our optimizer finds two different but almost equally
effective gaits.
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Fig. 11. We plot the convergence history using static initialization (a) and
random initialization (b). Both optimizations reduce the objective function
to less than 1% of the original value. This plot shows that many local minima
of our objective function leads to plausible animations. There are some jit-
tering during the optimization. This is because the adaptive penalty method
(Algorithm 1) is adjusting CDMP.

Name Value

Ccoll (Equation 4) 102

Cself (Equation 5) 102

µ (Equation 6) 0.7
Cenv (Equation 7) 101/l2
Cdrag (Equation 8) 103

N (Equation 9, 10) 5
CDMP (Equation 11) dynamic
Cshffle (Equation 12) 10−1

γ (Equation 12) log(10)/l

Name Value

Creg (Equation 13) 10−3

ϵ1 (Section 5.2.2) 3l
ϵ2 (Section 5.2.2) 0.01
D (Equation 16) 1000
∆t 0.05s
Young’s modulus 105Pa
Poisson’s ratio 0.48
Mass density ρ 1kд/m3

Gravity 9.81m/s2

Table 2. Parameters.

6 RESULTS
In this section, we highlight the results on complex benchmarks.
Parameter Choices: We use an identical set of parameters listed

in Table 2 for all the benchmarks. The coefficient of the physics
violation term is 1. Some parameters are related to l , which is the
average element size. If a deformable body has volume vol and is
discretized using P FEM elements, then l = (vol/P)1/3. An exception
is the coefficient for EDMP, which is adaptively adjusted within the
optimization algorithm.
Benchmarks: We implemented our method in C++ and tested it

on many benchmarks using a desktop machine with dual E5-2670
12-core CPU 2.1GHz and 12GB of memory. Given only a volumetric
mesh and a definition of the environment, we first precompute the
reduced dynamic model using [Pan et al. 2015]. We also precompute
the surface cubatures to approximate the fluid drag forces. We use
OpenMP to parallelize the function and gradient evaluations and
run at most 10000 iterations of optimizations or stop early, if the
relative error of ∥ ∂E(QK )

∂QK ∥ is smaller than 10−3. The setup and
computational cost in each benchmark is summarized in Table 3
and analyzed below.
Fish Swimming: Fishes have the simplest deformable bodies

and can be used for testing the performance of our method. As
illustrated in Figure 1, a fish swims by simply swinging its body, so
we use a reduced configuration space of small DOFs: |u | = 5, i.e.,
|q | = 11. Under this setting, we command the fish to swim straight
forward in a gravityless environment using the following objective:

Example V /P |u | Pre./PreSF.(min) K/#QK Opt.(hr) App.
Fish Swimming (Fig.12a) 2118/7812 5 0.8/0.1 200/3 1.7 DMP
Spider Swimming (Fig.12b) 1054/4033 10 1.2/0.3 200/3 2.5 DMP
Spider Swimming
Reduced StVK (Fig.21a) 1054/4033 65 4.6/0.3 200/1 3.9 None

Spider Walking (Fig.13) 1054/4033 10 1.2/ 200/4 5.2 FB
Dragon Walking (Fig.7) 929/1854 10 1.3/ 200/1 2.2 None
Letter T Walking (Fig.19a) 1523/3042 15 1.1/ 200/4 4.5 FB
Letter T Walking
Reduced StVK (Fig.21b) 1523/3042 65 4.2/ 200/1 3.1 None

Beam Jumping (Fig.14) 1024/640 10 1.1/ 100/1 1.1 None
Cross Rolling (Fig.16) 623/1499 10 1.3/ 200/1 2.1 None
Dinosaur Walking (Fig.18) 1493/5249 15 0.9/ 200/1 1.9 None

Table 3. Benchmark setup and computational overhead. From left to right,
number of verticesV /number of FEM elements P , DOFs of local deformation
|u |, precomputation time for building reduced dynamic model/computing
surface patch cubatures, number of frames/number of trajectories, time
spent on optimization, and the supported application: DMP means we use
DMP as open-loop controller to drive forward simulation, FB means that we
use feedback controller to track the animation (both of these are realtime).

Emove
obj (QK ) = C

move
obj

K∑
k=2
∥ck+1 − ck − exp(wk+1)vc∆t ∥2/2, (17)

where exp(wk+1) transforms the velocity to a global frame of ref-
erence and vc is the target swimming speed in a local frame of
reference. In addition, we add a balance energy to encourage fixed
orientation:

Ebalobj(QK ,d) = C
bal
obj

K∑
k=2
∥exp(wk )d − d ∥2/2, (18)

where d is the balance direction. Here we use d = д, the unit gravi-
tational direction. We can even navigate the fish to an arbitrary 3D
point by optimizing 3 trajectories: swimming forward, swimming
left, and swimming right. For swimming left and right, we add the
following objective functions in addition to Equation 17:

Eturnobj (QK ,d)

= Cturn
obj

K∑
k=2
∥exp(wk+1) − exp(θd∆t)exp(wk )∥2/2, (19)

where θd is the target rotating speed, we use d = д again. After
the optimization, the DMP function can be used as an open-loop
controller to generate controlled forward simulations at real-time
framerate. In Figure 12 (a), we wrap our forward simulator into a
sampling-based motion planner, RRT* [Karaman and Frazzoli 2011],
to navigate the fish to look for food plants.

Spider Swimming: We also evaluated our approach on a more
complex model: a four-legged spider. More degrees of freedom are
used to allow each leg to move independently, so we use more
DOFs: |u | = 10, i.e., |q | = 16. Again, we optimize to generate 3
trajectories with the same τ and µn for all trajectories. However,
for the first trajectory we set vc = 1,θ = 0, and for the other two
we set vc = 0,θ = ±1 so that the spider cannot turn itself around
while swimming forward. This gives very different gaits for turning
and swimming forward. We again use DMP to drive the realtime
forward simulator and wrap it into a motion planner, as illustrated
in Figure 12 (b).
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(a) (b)

Fig. 12. We use RRT* to navigate physical swimming characters, the fish
(a) and the spider (b), to look for food plants (green). The white line is the
locus of the deformable body’s center of mass computed using RRT*.

(a) (b)

Fig. 13. The spider walking on planar ground (a) and V-shaped ground (b).

Spider Walking: To analyze the walking animation, we use the
same spider model and objective Equation 17 but replace the fluid
drag force model with the frictional contact force model. However,
we observe that this optimization takes approximately twice as
many iterations to converge due to the contact-integrity term Eenv
and the shuffle avoidance term Eshuffle. In Figure 13, we illustrate
the walking gaits for two kinds of environments.
Similar to swimming, we allow a user to navigate the spider on

the ground by optimizing 4 trajectories: walking left, right, back-
ward, and forward, where the objective function is Equation 19 with
correspondingvc . We then use a feedback controller similar to [Tan
et al. 2012] to drive forward simulator. Specifically, we optimize
E(QK ) over one timestep (K = 3) with the objective function:

Etrackobj (QK ) = C
track
obj (q̄(q2) − q̄(q∗))TM(q̄(q2) − q̄(q∗))/2, (20)

where q∗k is the configuration of the tracked trajectory. Due to the ef-
ficiency of reduced representation, such short-horizon optimization
can be solved at realtime framerates.
Letter TWalking: A more challenging example is Letter T walk-

ing, as illustrated in Figure 6. This model has no static stability, so
it must keep jumping to move around. Again, we first optimize 4
trajectories and then track these trajectories at realtime to navigate
the character.
Beam Jumping: Jumping is an essential component in many

animations. To generate these animations, we use the following
objective function:

E
jump
obj (QK ) = C

jump
obj ∥д

T cK/2 − h∥2/2 + (21)

C
jump
obj ∥(I − дд

T )(cK/2 − cK/2−1 − exp(wK/2)vc∆t)∥2/2,
where the first term specifies the target altitude and the second
term specifies the target horizontal velocity vc so that the character
can jump forward. Using different h and vc , we generate a series of
results in Figure 14 and Figure 15 for a small beam, where the beam
exhibits huge and varied deformations.

(a) (b) (c)

Fig. 14. Different frames during a beam jumping with different target
altitudes (yellow arrow); (a): h = 2, (b): h = 3, and (c): h = 4.

(a) (b) (c)

Fig. 15. Different frames during a beam jumping forward with different
target distance (yellow arrow); (a): ∥vc ∥ = 2, (b): ∥vc ∥ = 2.5, and (c):
∥vc ∥ = 3 (the target altitude h = 3).

(b)

(a)

Fig. 16. (a): An X-shaped deformable body walking by rolling. (b): The rest
shape.

(c)

(b)

(a)

Fig. 17. To compute the navigation path for the spider, we optimize 3
trajectories: swimming forward (a), turning left (b), and turning right (c)
(the timestep index increases along the arrow, and the white bodies mark
the most deformed configurations). These differences in the gaits can be
represented by different DMP parameters αn and βn only.

Cross Rolling: As illustrated in Figure 16 (b), we generate a
rolling animation for a cross-shaped deformable body by combining
the objective functions given in Equation 18 and Equation 19.

6.1 Combining our Algorithm with Partial Keyframe Data
Although our main contribution is a control framework that does
not require keyframes, we can easily take keyframes into consid-
eration to provide more flexibility to a user. These keyframes can
either be specified fully or partially. A full keyframe specifies a
target position for each of the V vertices, while a partial keyframe
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(c)(b)

Fig. 18. We show a walking dinosaur guided by both our high-level objec-
tives and user-specified keyframes in (a) so that its head is looking around.
And the upper-body partial keyframes are illustrated in (b,c). Each of these
keyframes contains 788 of the 1493 vertices.

only specifies a target position for a subset of vertices on the de-
formable body. For example, in Figure 18 (a), we show a dinosaur
walking on the ground with its head swinging periodically to the
left and right. The dinosaur’s head is guided by a set of M partial
keyframes illustrated in Figure 18 (b). The keyframes only specify
the head and torso poses and we leave the leg poses to be deter-
mined by other objective function terms.We denote these keyframes
as ukey1 , · · · ,u

key
M specified at timesteps t1, · · · , tM . Note that these

keyframes only specify the dinosaur’s deformable poses u and do
not affect the global transformation (c,w). The keyframe guiding is
achieved using an additional objective function:

E
key
obj (QK ) = C

key
obj

M∑
i=1
∥I (q(ukeyi ) − q(uti ))∥

2/2, (22)

where I is an importance-weighting matrix allowing the users to
specify partial keyframes. In our example, I is a diagonal matrix
with diagonal value 1 around the head and torso (788 vertices) and
0 elsewhere.

6.2 Analysis
We summarize objective functions used in all benchmarks in Table 4
and analyze several aspects of our method.
Two-Stage Algorithm: A drawback of our method is that the

optimization formulation takes a more complex form, and the re-
sulting optimization algorithm takes longer time than [Barbič et al.
2009]. Fortunately, the DMP function returned by the optimizer
can be used as a swimming controller to generate more swimming
animation at realtime, as illustrated in Figure 12. This makes our
method much more useful than a simple keyframe interpolation.

Example Eobj

Fish Swimming Eobj = Emove
obj + E

turn
obj + E

bal
obj, vc =

(
1 0 0

)T
,θ = 0,±1,d = д

Spider Swimming Eobj = Emove
obj + E

turn
obj + E

bal
obj,

vc =
(
1 0 0

)T
,θ = 0 or vc =

(
0 0 0

)T
,θ = ±1,d = д

Walking Eobj = Emove
obj + E

bal
obj, vc =

(
±1 0 ±1

)T
,d = д

Dinosaur Walking Eobj = Emove
obj + E

bal
obj + E

key
obj , vc =

(
±1 0 ±1

)T
,d = д

Jumping Eobj = E
jump
obj + E

bal
obj, h = 2/3/4,vc =

(
2/2.5/3 0 0

)T
,d = д

Rolling Eobj = Eturnobj + E
bal
obj, vc =

(
1 0 0

)T
,θ = 1,d = vc × д/∥vc × д∥

Cmove
obj = Cturn

obj = C
jump
obj = C

key
obj = 10−1 and Cbal

obj = 10−2

Table 4. Objective function used in each benchmark.

However, to generate realtime contact-rich animations, such as
walking and jumping, we have to use a feedback controller instead
of DMP controller. This is because the contact forces are very sensi-
tive to the discrepancy between forward simulation model and the
physics model used in spacetime optimization (model discrepancy).

Multi-Tasking: In order to make the realtime animations di-
rectable, we need to simultaneously optimize multiple animation
trajectories to allow amotion planner to pick trajectory online. How-
ever, if we sequentially run separate optimizations, the generated
gaits can be quite different, e.g., the fish might swing its body with
different frequencies to swim in different directions. This artifact
can be mitigated if we use the same DMP parameters τ and µn
for all the trajectories to ensure the same period of movement and
phase shift, i.e., DMPs differ only in αn and βn for different tasks.
This idea has been previously used for DMP-based reinforcement
learning [RÃĳckert and D’Avella 2013]. As illustrated in Figure 17,
DMP can represent large gait differences using different αn and βn
only, while the rhythms of the movements are synchronized. We
use this strategy in all the navigation examples.

QualityMeasure: For jumping animation, we do not require any
manual bases design such as basis expansion [Tan et al. 2012]. The
reason is that we formulated physics constraints as soft constraints
and physics constraints are violated for small tracking errors. To
measure the violation to EOM at each frame (qi−1,qi ,qi+1), we first
solve Equation 3 using qi−1,qi to find a physically correct q∗i+1 by
calling a conventional deformable body simulator. Next, we recover
the vertex positions from qi+1,q∗i+1 to compute q̄(qi+1), q̄(q∗i+1). We
measure the EOM violation by computing the average distance
between q̄(qi+1), q̄(q∗i+1) of V vertices, and comparing it with the
average FEM element size l :√

∥q̄(qi+1) − q̄(q∗i+1)∥2/V /l .
According to the plot in Figure 19, the physics violation over the
whole trajectory is always less then half of average element size
and is neglectable. The physics violation data for other examples
can be found in Appendix A . However, manual bases design can
sometimes be needed. For example, very different rolling gaits are
generated in Figure 16, by restricting the bases to the 2D plane.

Effect of Different Parameters: Instead of using keyframes,
the result of our algorithm depends on two sets of parameters.
A first set of parameters are listed in Table 2. These parameters
are considered internal and not exposed to users. The second set
of parameters, which are listed in Table 4, are exposed to users.
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(b)

(c)

Fig. 19. (a): Navigating the letter T across obstacles (yellow) to reach goal
positions (green). (b): A plot of the relative physical violation in (a) with re-
spect to average FEM element size. Throughout the trajectory, the violations
to EOM are very small. (c): Two most violated frames in the spider walking
trajectory (q∗i+1 drawn in green); the differences are indistinguishable.
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Fig. 20. We generate 9 spider walking trajectories (a) and 9 spider swimming
trajectories (b), using different target moving speed vc . We plot the actual
walking/swimming speed compared with the desired speed. These actual
values are very close to desired values. However, there are still cases where
the discrepancy between actual and desired values are large (green circles).

These parameters have clear meanings such as walking, swimming,
or rolling speed. In Figure 20, we highlight the effectiveness of
performing animation control. We generated 9 walking/swimming
trajectories using different target moving speed vc . Since we model
Eob j as a soft penalty, the desired speed cannot be achieved exactly.
However, according to Figure 20, the discrepancy between actual and
desired moving speeds are very small. Therefore, we expose more
parameters to the users compared with keyframe-based methods
[Barbič et al. 2009; Schulz et al. 2014], these parameters have intuitive
meanings and are helpful for animation control.

We also noticed two cases from Figure 20 (green circles) where the
discrepancy between desired and actual moving speed are relatively
large. If the desired speed is too small, then our optimizer considers
Eobj as unimportant and it is given lower importance in order to
reduce the residue in other objective terms. If the desired speed is
too large, it can result in self-collisions or the optimizer falls into a
bad local minima, as shown in Figure 9.

External vs. Internal Control Forces: Theoretically, our al-
gorithm only uses internal forces. To understand this, note that
internal forces are forces whose values and torques sum up to zero.
In other words, internal forces are forces that cannot change c,w of
q. Since a conservative force equals the negative partial derivatives
of the corresponding potential energy, any potential energy with
zero derivative against c,w corresponds to the internal forces. This
is the case with our potential energy FTu in Equation 3.

However, since we formulate the physical correctness as a penalty
term, EEOM, rather than a hard constraint, there is some residual
EEOM , 0 at the local minima. This residual can be interpreted as
a violation of the physical correctness, or as a ghost external force.
If we write EEOM(qi−1,qi ,qi+1) = ∥Eдhosti

T
q̄∥, we are actually

controlling the deformable body using both internal force Fi and an
additional ghost external force Eдhosti , but our objective function
is designed to guide the optimizer to search for a solution with
minimal ghost external force magnitude.
Using soft penalty instead of hard constraints also allows us

to generate realtime deformable body animations by tracking an
optimized animation. For example, having the letter-T balanced on a
single contact point in Figure 19 is very challenging, which usually
requires control over long horizons. However, with soft penalty, we
can track the animation by control over only one timestep using
Equation 20 as the objective function.

Other Reduced Models: Although we choose [Pan et al. 2015],
our method can also work with other reduced models. This can be
done by modifying the transformation function q̄(q) and the kinetic
energy P in Equation 3. In Appendix D, we analyze the case with two
kinds of different but widely used reduced models: LMA [Pentland
and Williams 1989] and reduced StVK [Barbič and James 2005]. And
two examples are illustrated in Figure 21 (a,b).
A drawback of these alternative models is that they require a

higher-dimensional configuration space to achieve similar results as
[Pan et al. 2015]. In our experiments, we use |u | = 65 and each opti-
mization becomes 3-5 times slower according to Table 1. However,
from the plots of DMP control force magnitudes, Figure 21 (c,d), we
notice that the optimal F is actually very sparse. In other words,
much computations are wasted on looking for small, unimportant
control forces. Such analysis suggests that [Pan et al. 2015] is a
better choice.

Although our formulation can alsoworkwith fullspace deformable
models by replacing q̄ with identity function, this approach can be
computationally very expensive. As reported in [Pan et al. 2015],
using a reduced model accelerates the evaluation of q̄(q) by two
orders of magnitude. In our experiments, cubature accelerates the
evaluation of fluid drag forces by at least an order of magnitude
using Equation 15. Since function evaluation is the major bottleneck
of spacetime optimization, we expect it will take weeks or even
months to finish an optimization using fullspace models. As a re-
sult, it is important to use reduced deformable models for efficiency
reasons.

Other (Partial) Keyframe-basedMethods:Ourmethod allows
a user to specify partial keyframes to control parts of a deformable
body that does not involve environmental interactions. A different
approach is proposed in [Schulz et al. 2014], which uses partial
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Fig. 21. We computed the animations corresponding to spider swimming
(a) and letter T walking (b) using reduced StVK [Barbič and James 2005]
as the underlying deformable model. In addition, we plot the control force
magnitude for the spider in (c) and for the letter T in (d). We use different
curves to plot each F j . Since |u | = 65, we have 65 curves in each plot.
However, most of these curves are centered around zero axis. This means
that the magnitude of control forces for most j are very small and F is quite
sparse.

keyframes to manually specify parts that involve environmental
interactions. Overall, our approach is complementary and gener-
ates different deformations or animations. The two benchmarks
correspond to cross-shape walking (Figure 22) and cactus jumping
(Figure 23) and we have compared the animations in the video. In
both these examples, we encode the objective into the functions
shown in Equation 17 and Equation 21. In practice, our approach
requires less user input. We also observed that our deformation
patterns in jumping animation are quite different from [Schulz et al.
2014].

7 LIMITATIONS AND FUTURE WORK
We present a method to automatically generate active animations of
reduced deformable bodies, where the user provides a high-level ob-
jective and the animation is generated automatically using spacetime
optimization. We take into account physics constraints, environ-
mental forces in terms of CIO and fluid drag models, and DMP-based
controller parametrization, so that the local minima of our objec-
tive function corresponds to a plausible animation. By evaluating
objective functions and function gradients in a subspace, the op-
timization can be accomplished within several hours on a single
desktop machine. Although optimization is offline, the results can
be used to generate animations at realtime rates. For swimming
animations, the optimized DMPs can be used as a controller for
forward simulation. Unfortunately, DMP cannot be used as con-
trollers for contact-rich animations. Since DMP is not a feedback
controller, model discrepancy can quickly accumulate, leading to

(a) (c)

(b): Image courtesy of [Schulz et al. 2014]

Fig. 22. We compare our method with partial keyframe-based method. Our
method can generate a cross-shape walking motion (a) similar to the results
(b) in [Schulz et al. 2014] obtained using keyframe set (c).

(a)

(c)
(b): Image courtesy of [Schulz et al. 2014]

Fig. 23. Our method generating a cactus-jumping motion (a) similar to the
results (b) in [Schulz et al. 2014] obtained using keyframe set (c). However,
our deformation patterns are quite different compared with those in [Schulz
et al. 2014].

failures such as falling. In these cases, DMP is just used as a periodic
and smoothness prior.
Our approach has some limitations. First, our method inherits

all the limitations of the underlying reduced model. For example,
current reduced model [Pan et al. 2015] cannot work with user
specified skeletons. Working with skeletons is a desirable feature
in terms of modelling some animal-like deformable bodies, such
as the fish, where deformable tissues are covering skeletal bones.
In addition, although our method requires no keyframes or user
designs, we still ask the users to choose the form of Eobj and their
parameters in Section 6. Moreover, without the keyframes, our an-
imations may not exhibit the same level of naturalness as some
prior keyframe-based methods [Barbič et al. 2009]. For example,
the dinosaur’s walking gait is not symmetric in Figure 18 due to
the asymmetric rest pose. And it can be difficulty to generate the
handstand example of [Schulz et al. 2014] in Figure 23. Moreover,
our optimizer may get stuck in a bad local minima due to insuffi-
cient DOFs of the reduced configuration space, a sub-optimal bases
set, or an inappropriate settings of the weights. Furthermore, the
inherent limitations of CIO term [Mordatch et al. 2013] for con-
tact modeling and the fluid drag model can also affect our results.
For example, we cannot have a deformable body bouncing off the
ground since the CIO term only models inelastic contacts. CIO also
allows inexact contacts to occur anywhere in the air, not only on
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the ground. Finally, like all the optimization-based motion planners,
the performance of our method is still governed by a large set of
parameters. Some parameters, such as the number of DMPs (N),
are determined empirically. We have not evaluated the sensitivity
of our method with respect to these parameters.
There are avenues for future work. First, incorporating some

body-specific priors can be helpful in several ways. For example,
for many muscle-driven deformable bodies, the user might want to
parameterize the controller using muscle-tendon units [Wang et al.
2012] to generate more life-like animations. Another part that may
benefit from user interactions is the identification of deformation
bases in Figure 2. Currently, we identify these components using
standard techniques [Pan et al. 2015] that are designed for visual
simulation. However, it is not known if a base set for plausible visual
simulation is suitable for character locomotion. It is also attractive to
consider the optimization method as a general feedback controller,
instead of an open-loop controller, for reduced deformable models
using reinforcement learning [Peng et al. 2017]. Finally, developing
control methods for two-way couple deformable body and articu-
lated body will provide more flexibility to users. A starting point
can be [Xu and Barbič 2016].
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Model (X × Y × Z ) l
Fish 2 × 1.2 × 0.2 0.071
Spider 1.65 × 0.51 × 1.65 0.079
Letter T 1.00 × 1.24 × 0.1 0.037

Model (X × Y × Z ) l
Dragon 1.52 × 0.71 × 1.03 0.075
Beam 0.2 × 2 × 0.2 0.14
Cross 1 × 1 × 0.1 0.042

Table 5. Model parameters used in our experiment. From left to right, model
name, bounding box size (X × Y × Z ), and average FEM element size l.
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A PHYSICS VIOLATION
We provide the physics violation data for all the examples in Table 6.
We use the same criterion:√

∥q̄(qi+1) − q̄(q∗i+1)∥2/V /l .
Compared with the average FEM element size l , the error due to
physics violation is very small. The parameters for all the volumetric
deformable models are provided in Table 5.

B OPTIMIZATION ALGORITHM
In this section we summarize our main Algorithm 2. The skeleton
of this algorithm is an LM optimizer. We refer readers to [Lourakis
2005] for a brief introduction of this simple method. In our experi-
ments, LM performs much better than LBFGS for two reasons. First,
LM uses JT J approximation of the hessian which usually leads to a
better step size estimation. Second, although LM needs to search for
the so-called damping coefficient as in the process of the line-search
scheme, it requires only function value evaluations which are much
faster than gradient evaluations used by the line-search scheme of
LBFGS.

However, a minor problem with using an LM algorithm is that it
assumes the objective function is a sum of squares, which is violated
by Eshuffle. In Appendix B.1, we show that a marginal modification
to [Lourakis 2005] will allow us to handle Eshuffle.
After every successful LM iteration, we update E ; we update
W every 10 iterations. Since each update leads to an energy value
decrease, the algorithm is guaranteed to converge eventually. Finally,
we also update the active vertices contributing to Eenv and Eshuffle
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Table 6. The physics violation of all the 7 benchmarks.

in Line 33. A minor bottleneck in this algorithm is the sparse linear
system in Line 8, but we notice that the hessian of E(QK ) is a block-
tridiagonal matrix that can be inverted with linear time complexity.

B.1 LM Modification for Eshuffle
Conventional LM assumes that the objective function takes the
form of E(QK ) = f (QK )T f (QK )/2 where f is a vector of nonlinear
terms. This is not the case with Eshuffle. However, among the many
implementations of LM, the one documented in [Lourakis 2005] is
not limited to the above form. If we have a certain approximation of
the hessian of E(QK ) denoted as H (not necessarily in the form of
JT J ) and use damping coefficient d , then the update to QK in our
main algorithm is computed as:

∆QK = −(H + dI)−1 ∂E(QK )
∂QK

,

and the decrease in E(QK ) after applying the update is:

∆QTK
∂E(QK )
∂QK

+
1
2∆Q

T
KH∆QK =

1
2∆Q

T
K (
∂E(QK )
∂QK

− d∆QK ),

which is exactly the expected function value decrease estimation
used in [Lourakis 2005]. This allows us to use a non-JT J form of
approximate hessian for Eshuffle. In our case, we approximate the
term Eshuffle by first order expansion for both v j (qi ) and v j (qi−1),
giving:
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Eshuffle(qi ,qi−1)

=

V∑
j=1
∥(v j (qi + ∆qi ) −v j (qi−1 + ∆qi−1))∥ ∥2

exp(−γdist(v j (qi + ∆qi )))

≈
V∑
j=1
∥(v j (qi ) +

∂v j

∂qi
∆qi −v j (qi−1) −

∂v j

∂qi−1
∆qi−1)∥ ∥2

exp(−γdist(v j (qi ) +
∂v j (qi )
∂qi

∆qi )),

and use the hessian of the last equation above. Conventional JT J
approximation of the hessian is used for all other terms.

B.2 Eliminating Internal Force Terms
In our objective function, Fi is a quadratic function in EEOM, in
the Tikhonov regularization Creg∥Fi ∥

2/2, and in the DMP regu-
larization EDMP. We analytically solve and eliminate Fi from the
optimization as follows:

min
Fi

EEOM(qi−1,qi ,qi+1) +Creg∥Fi ∥
2/2 +CDMPEDMP(Fi )

= min
Fi

1
2
[
∥EOMi − Fi ∥

2 +Creg∥Fi ∥
2 +CDMP∥Fi − DMPi ∥2

]
=

1
2

(
EOMT

i DMPTi

)
Mreg

(
EOMi
DMPi

)
EOMi ≜

(
I 0 0

) [ ∂q̄
∂q

T
(qi+1)MA(qi+1) +

∂
[
P − Ei

T q̄
]

∂q
(qi+1)

]

DMPi ≜

©«
DMPp/np (i∆t ,W1)
DMPp/np (i∆t ,W2)

...

DMPp/np (i∆t ,W|Fi |)

ª®®®®®¬
Mreg ≜

1
1 +Creg +CDMP

(
Creg +CDMP −CDMP
−CDMP CregCDMP +CDMP

)
⊗ I.

C V (Q) AND ITS DERIVATIVES
In this section, we briefly summarize the transformation function
from the reduced representation q to a vertex v’s Euclidean coordi-
nates as defined in [Pan et al. 2015]. We then provide some guidance
on the computation of ∂v(q)

∂q and ∂2v(q)
∂q2 . Since we use the LM algo-

rithm for space-time optimization, most objective terms only require
a first order derivative ∂v(q)

∂q . An exception is the physics violation
term EEOM, which requires second order derivatives.

C.1 Transformation Function
We assume that a deformable body is discretized usingV vertices and
P elements. For each element j, its deformation gradient is denoted
as F j . Vertices’ Euclidean coordinates q̄ can be reconstructed from F j

through Poisson reconstruction. We abbreviate this linear operator
as:

q̄ = ∆−1
(
F 1T · · · FPT

)T
.

It is well-known that F j above has a polar decomposition F j = R jS j

where R j is a rotation and S j is an anisotropic scaling. We can then
use the Rodrigues formula on the rotation part to get R j = exp(τ j ),
where τ j is the rotation vector of element j . The rotation-strain (RS)
space is defined by the space spanned by all possible τ j and S j − I:

span(RS) = {(τ 1, · · · ,τ P , S1 − I, · · · , SP − I)|S j is SPD}.
RS representation and Euclidean coordinates are equivalent. How-
ever, using RS representation is advantageous because the most vi-
sually salient deformations lie in a low-dimensional linear subspace
of span(RS). Therefore, we can use conventional linear dimension-
ality reduction techniques such as linear modal analysis [Pentland
and Williams 1989] in RS space to arrive at the following low-rank
approximation:

(τ 1, · · · ,τ P , S1 − I, · · · , SP − I) ≈ Bu,
where B is a set of bases in the RS subspace. The transformation
function from u to q̄ can then be defined by combining the above
equations:

q̄(q) = ∆−1[exp](Bu)[S](Bu)

[exp] (Bu) ≜
©«
exp(τ 1)

. . .

exp(τ P )

ª®®¬ [S] (Bu) ≜
©«
S1

...

SP

ª®®¬ .
However, this only encodes deformations in the local frame of refer-
ence. To allow arbitrary movement in the global frame of reference,
we can superimpose a global translation c and rotationw , giving:

q̄(q) =
©«
exp(w )

. . .

exp(w )

ª®®®¬∆
−1[exp](Bu)[S](Bu) +

©«
c
.
.
.

c

ª®®®¬ .

C.2 Kinetic Cubature Acceleration
Merely having the low-rank approximation does not accelerate com-
putation. The evaluation of q̄ is still computationally costly because
it requires a summation over all the P elements. This procedure
can be accelerated using cubature approximation by assuming the
following approximation:

∆−1[exp](Bu)[S](Bu)
=

∑
j
∆−1
j exp(w j )S j ≈

∑
j ∈T

C
j
RS∆
−1
j exp(w j )S j ,

where ∆−1
j is the block of ∆−1 corresponding to the jth element. The

weightingC j
RS and the set of cubature elements T are precomputed

using L0-optimization.

C.3 Derivatives

To derive ∂v(q)
∂q and ∂2v(q)

∂q2 , we notice that they can always be
written as a long chain of matrix productions, where each matrix
is either a constant, a linear function of q, or a linear function
of exp(w), ∂exp(w )

∂w , and ∂2exp(w )
∂w2 . Equations of this form can be

accelerated using fast sandwich transform (FST) [Kim and James
2011], i.e., by precomputing high-order tensors and contracting them
with q, exp(w), ∂exp(w )

∂w , and ∂2exp(w )
∂w2 at runtime. The remaining

problem is to derive ∂exp(w )
∂w and ∂2exp(w )

∂w2 . A closed-form of ∂exp(w )
∂w
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can be found in [Gallego and Yezzi 2015]. We now derive ∂2exp(w )
∂w2

below using their notations:

R ≜ exp(w) ∂R
∂wi

= [vi ]R

∂2R
∂wi∂w j

= [ ∂vi
∂w j
]R + [vi ]

∂R
∂w j

vi ≜
wiw + [w](I − R)ei

∥w ∥2

= w̄iw̄ −
sin(θ )[w̄]2 + (1 − cos(θ ))[w̄]3

θ
ei

=
θ − sin(θ )

θ
w̄iw̄ +

1 − cos(θ )
θ

[w̄]ei +
sin(θ )
θ

ei ,

where we used the identity w̄ = w/∥w ∥, θ = ∥w ∥, [w̄]2 = (w̄w̄T − I),
and w̄T [w̄] = 0. Finally, the ∂vi

∂w j
above has the following form:

∂vi
∂w j

=
θ − sin(θ )

θ2 (ejw̄i + w̄δi j − 2w̄w̄iw̄ j ) +

sin(θ ) − θcos(θ )
θ2 w̄w̄iw̄ j +

1 − cos(θ )
θ2 [ej − w̄ jw̄]ei +

θsin(θ ) + cos(θ ) − 1
θ2 [w̄]eiw̄ j −

sin(θ ) − θcos(θ )
θ2 eiw̄ j .

D OTHER REDUCED MODELS
In this section, we analyze the cases where rotation-strain coor-
dinates [Pan et al. 2015] is replaced with either LMA [Pentland
and Williams 1989] or reduced StVK [Barbič and James 2005]. As
mentioned in Section 6.2, we need to modify both q̄(q) and P in
Equation 3. In both cases, q̄(q) takes the following simple form:

q̄(q) =
©«
exp(w)

. . .

exp(w)

ª®®¬ (Uu) +
©«
c
...

c

ª®®¬ ,
where U is a set of linear deformation bases. Due to the lack of
rotation-strain transformation, we have to introduce more columns
toU than B in order to represent nonlinear deformations. If LMA is
used, P takes the same quadratic form as that for rotation-strain co-
ordinates, P(q) = uTKu/2. If reduced StVK is used, P(u) is a quartic
function in u whose polynomial coefficients can be precomputed.
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