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APPENDIX

A. COMPARISON WITH PREVIOUS FEATURE
EXTRACTION METHODS

A.1 Comparison with SMS

The Spectral Modeling Synthesis (SMS) method [Serra and
Smith III 1990] detects a peak also in the power spectrogram, tracks
the one peak point over time, and forms an amplitude envelope.
One can certainly use this amplitude envelope to infer the damp-
ing value, for example, by linear regression of the logarithmic am-
plitude values (which is the approach adopted by [Välimäki et al.
1996]). There are, however, several disadvantages of this approach.

First of all, tracking only the peak point over time implies that the
frequency estimation is only accurate to the width of the frequency
bins of power spectrogram. For example, for a window size of 512
samples, the width of a frequency bin is about 86 Hz, direct fre-
quency peak tracking has frequency resolution as coarse as 86 Hz.

Serra and Smith pointed out this problem [Serra and Smith III
1990], and proposes to improve the accuracy by taking the two
neighboring frequency bins around the peak and performing a 3-
point curve fitting to find the real peak [Serra 1989]. Our method
takes a further step: instead of 3 points per time frame, we use all
points within a rectangular region. The region extends as far as pos-
sible in both frequency and time axes until (a) the amplitude falls
under a threshold to the peak amplitude, or (b) a local minimum in
amplitude is reached. We then use an optimizer to find a damped
sinusoid whose power spectrogram best matches the shape of the
input data in the region of interest. An example is shown in Fig. 15a,
where the blue surface is the power spectrogram of the input sound
clip, and the overlay red mesh is the power spectrogram of the best
fitted damped sinusoid.

(a) (b)

Fig. 15: Estimation of damping value in the presence of noise, using (a) our
local shape fitting method and (b) SMS with linear regression.

Secondly, for linear regression to work well, there must be at least
two points (the more the better) along the time axis, before the sig-
nal falls to the level of background noise. For high damping values,
there will be only a few data points along the time axis. On the
other hand, we know that the damping value is also reflected in the
width of the hill, so when there are not enough points along the
time axis, there are more points along the frequency axis with sig-
nificant heights–which will help determining the damping value in
our surface fitting method.

Taking more points into account makes it less sensitive to noise. In
Fig. 16, we simulated a noisy case where white noise with signal-
to-noise ratio (SNR)=8 dB is added to a damped sinusoid with
damping value 240, and use (a) our local surface fitting method and
(b) SMS with linear regression to infer the damping value. In this
particular example, due to the high damping value and high noise
level, only 4 points participate in linear regression, while 24 points
are considered in our method. Our shape fitting is less sensitive to
irregularities than the fitted line in SMS. The average damping er-
ror versus damping value for both methods are plotted in Fig. 16a
and Fig. 16b, where SNR=20 dB and 8 dB respectively.

(a) (b)

Fig. 16: Average damping error versus damping value for our method and
SMS.

Mathematically, the 2D power spectrogram contains as much in-
formation as the original time domain signal (except for the win-
dowing effect and the loss of phase). Using only a 1D sequence in-
evitably discards a portion of all available information (as in SMS),
and in some cases (e.g. high damping values and high noise level)
this portion is significant. Our surface matching method utilizes
as much information as possible. Fitting a surface is indeed more
costly than fitting a line, but it also achieves higher accuracy.

A.2 Comparison with a Phase Unwrapping Method

The ‘phase unwrapping’ technique proposed by [Pai et al. 2001]
and [Corbett et al. 2007] is known for its ability to separate close
modes within one frequency bin. Our method, however, works un-
der a different assumption, and the ability to separate modes within
a frequency bin has different impacts in our framework and theirs.
In their framework, the extracted features {fi, di, ai} are directly
used in the sound synthesis stage and thus control the final audio
quality. In our case, the features are only used to guide the sub-
sequent parameter estimation process. In this process, two close
modes will show up as near-duplicate points in the (f, d)-space.
Because as pointed out by [Pai et al. 2001], modes with close fre-
quencies usually result from the shape symmetry of the sounding
object, and their damping values should also be close. In the pro-
cess of fitting material parameters, or more specifically, in comput-
ing the feature domain metric, replacing these near-duplicate points
with one point does not affect the quality of the result much.

Secondly, despite its ability to separate nearby modes, [Corbett
et al. 2007] also proposes to merge modes if their difference in
frequency is not greater than human’s audible frequency discrimi-
nation limit (2-4 Hz). Among the multiple levels of power spectro-
grams that we used, the finest frequency resolution (about 3 Hz) is
in fact around this limit.
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Fig. 17: Interference from a neighboring mode located several bins away.

(a) (b) (c)

Fig. 18: A noisy, high damping experiment.

On the other hand, our proposed feature extraction algorithm offers
some advantages and achieves higher accuracy compared with [Pai
et al. 2001] and [Corbett et al. 2007] in some cases. When ex-
tracting the information of a mode, other modes within the same
frequency bin (which are successfully resolved by the Steiglitz-
McBride algorithm [Steiglitz and McBride 1965] underlying [Pai
et al. 2001] and [Corbett et al. 2007]) are not the only source of
interference. Other modes from several bins away also affect the
values (complex or magnitude-only alike) in the current bin, known
as the ‘spillover effect’. In order to minimize this effect, the greedy
method proposed in our paper collects the modes with the largest
average power spectral density first. Therefore, when examining a
mode, the neighboring modes that have higher energy than the cur-
rent one are already collected, and their influence removed. This
can be demonstrated in Fig. 17. The original power spectrogram
of a mode (f1, d1, a1) is shown in Fig. 17a. The values at the fre-
quency bin Fk containing f1 are plotted over time, shown as the
blue curve in Fig. 17c. In Fig. 17b, the the presence of another
strong mode (f2, d2, a2) located 5 bins away changes the values
at Fk, plotted as the red curve in Fig. 17c. The complex values of
the STFT at Fk are not shown, but they are similarly interfered.
If these complex values at Fk are directly fitted with the Steiglitz-
McBride algorithm in the works by [Pai et al. 2001] and [Corbett
et al. 2007], the estimated damping has a 20% error. The greedy
approach in our multi-level algorithm removes the influence of the
neighboring mode first, resulting in a 1% damping error.

Based on our experimentations, we also found that the universal
frequency-time resolution used in [Pai et al. 2001] and [Corbett
et al. 2007] is not always most suitable for all modes. Our method
uses a dynamic selection of frequency-time resolution to address
this problem. For example, in the case of high damping values,

under a fixed frequency-time resolution, there may only be a few
points above noise level along the time axis, which will undermine
the accuracy of the Steiglitz-McBride algorithm. Fig. 18 shows
such an example, the damping value (150 s−1) is high but not un-
reasonable, as shown in the time domain signal Fig. 18a, where
a white noise with SNR=60 dB is added. The power spectrogram
is shown in Fig. 18b. We implemented the method in the paper
by [Corbett et al. 2007] using the suggested 46 ms window size
(with Noverlap = 4) and tested on the above case. The input to
this method is the complex values at the peak frequency bin, whose
magnitudes of the real and imaginary parts are shown in Fig. 18c,
and an error of 5.7% for damping is obtained. As a comparison, our
algorithm automatically selects a 23 ms window size and fits the
local shape in a 6× 5 region in the frequency-time space, yielding
merely a 0.9% error for damping.

B. CONSTANTS AND FUNCTIONS

We provide here the actual values and forms used in our implemen-
tation for the constants and functions introduced in Sec. 5.2,

For the relationship between critical-band rate z (in Bark) and fre-
quency (in Hz), we use

Z(f) = 6 sinh−1(f/600) (30)

that approximates the empirically determined curve shown in
Fig. 4a [Wang et al. 1992].

We use cz = 5.0 and cd = 100.0 in Eqn. 21 and Eqn. 22.

In Eqn. 23, the weight wi associated to a reference feature point ϕi

is designed to be related to the energy of mode i. The energy can
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be found by integrating the power spectrogram of the damped sinu-
soid, and we made a modification such that the power spectrogram
is transformed prior to integration. The image domain transforma-
tion introduced in Sec. 5.2.1, which better reflects the perceptual
importance of a feature, is used.

The weight ũij used in Eqn. 24 is ũij = 0 for k(ϕi, ϕ̃j) = 0, and
ũij = 1 for k(ϕi, ϕ̃j) > 0 (uij is defined similarly).

For the point-to-point match score k(ϕi, ϕ̃j) in Eqn. 24, we use

k(ϕi, ϕ̃j) = k(D) =


1.0− 0.5D if D ≤ 1.0

0.5/D if 1.0 < D ≤ 5.0

0 if 5.0 < D

(31)

where D = D(ϕi, ϕ̃j) is the Euclidean distance between the two
feature points (Eqn. 20).
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