
Retraction-Based RRT Planner for Articulated Models

Jia Pan1 and Liangjun Zhang2 and Dinesh Manocha3
1panj@cs.unc.edu,3 dm@cs.unc.edu, Dept. of Computer Science, University of North Carolina at Chapel Hill

2zhanglj@stanford.edu, Dept. of Computer Science, Stanford University
Videos available at http://gamma.cs.unc.edu/ARRRT/

Abstract— We present a new retraction algorithm for high
DOF articulated models and use our algorithm to improve the
performance of RRT planners in narrow passages. The retrac-
tion step is formulated as a constrained optimization problem
and performs iterative refinement on the boundary of C-
Obstacle space. We also combine the retraction algorithm with
decomposition planners to handle very high DOF articulated
models. The performance of our approach is analyzed using
Voronoi diagrams and we show that our retraction algorithm
provides a good approximation to the ideal RRT-extension in
constrained environments. We have implemented our algorithm
and tested its performance on robots with more than 40 DOFs
in complex environments. In practice, we observe significant
performance (2-80X) improvement over prior RRT planners
on challenging scenarios with narrow passages.

I. I NTRODUCTION

Sample-based planning has been widely used to com-
pute collision-free path for robots in complex environments.
These methods generate samples with randomized tech-
niques, and connect them using local planning methods. The
main goal is to capture the connectivity of the free space of a
robot’s configuration space by using tree or graph structures
such as probabilistic roadmaps (PRMs) or rapidly-exploring
random trees (RRTs) [15]. However, the performance of
sample-based planning algorithms may degrade if the free
space has narrow passages.

In this paper, we address the problem of computing
collision-free motion for articulated models in constrained
environments with multiple obstacles and narrow passages.
Most of the prior work on handling narrow passages has
been mainly limited to rigid models, e.g. [1], [8], [28],
[31]. In practice, articulated models result in some additional
challenges with respect to sample-based motion planning.
First of all, the articulated models have many more degrees
of freedom (DOFs), which increase the complexity of the
underlying planning problem. Secondly, the planner needs
to ensure that there are no self-collisions in the robot, in
addition to preventing collisions between the robot and the
obstacles. These self-collisions can generate many small and
isolated components in theC-Obstacle space and thereby
result in additional challenges in terms of handling narrow
passages.

Main results: We present a new retraction-based al-
gorithm for articulated models and combine it with RRT
planners. We formulate the retraction step as a constrained
optimization problem that performs iterative refinement on
the boundary ofC-Obstacle space to compute a free-space
configuration that is nearest to the random sample. We further

generalize our retraction algorithm to planners that use de-
composition techniques to deal with very high DOF models.
We also analyze our retraction algorithm based on Voronoi
diagrams and show that our retraction is a good approxima-
tion for ideal RRT-extension in constrained environments.We
have implemented our algorithm and tested its performance
on models with 40 DOFs in complex environments with
narrow passages. In practice, our algorithm can significantly
improve the performance by 2-80 times as compared to RRT
planners.

The rest of paper is organized as follows. In Sec. II, we
briefly survey the related work. We present our optimization-
based retraction algorithm and combine it with RRT planners
in Sec. III. Sec. IV describes a modified algorithm to
combine our retraction step with decomposition planners to
handle very high DOF models. We analyze the performance
of our planners using Voronoi diagrams in Sec. V. We
discuss its implementation and highlight the performance on
different benchmarks in Sec. VI.

II. RELATED WORK

In this section, we give a brief overview of related work in
motion planning for articulated models and handling narrow
passages.

A. Motion Planning for Articulated Models

There is considerable work on motion planning for articu-
lated models using sample-based planners. Some of the most
popular algorithms are based on decomposition techniques,
which assume that the articulated model can be decomposed
into components with low-correlation and then use suitable
strategies to coordinate between different components [5],
[24], [32]. However, these methods may not work well in
dealing with narrow passages. Other approaches use reduced
kinematics [10], [18] and multi-level methods [29].

For articulated models with very high dimension (> 100),
e.g. protein chains, potential energy based approaches are
usually used [13], [20], [26], [27]. The potential energy
formulation is often defined to guide the search toward a
goal configuration.

B. Handling Narrow Passages for Articulated Models

Many techniques have been proposed to address the nar-
row passage problem for articulated models. These include
adaptive sampling according to workspace information [12]
or sampling history [4], dilation-based approaches [3], [25]
and retraction-based approaches. Dilation-based approaches

[3], [25] shrink the obstacles and thereby improve the visi-
bility of the free space. However, these methods are mainly
limited to volumetric objects and may not be able to handle
self-collisions well. Voronoi regions of workspace can be
used to generate samples in narrow passages [7], [19].

C. Retraction-Based Planning

The retraction-based approaches have been widely used
to improve the performance of sample-based planners in
narrow passages [1], [21], [23], [28], [31]. The main idea is
to retract a randomly generated configuration that lies inC-
Obstacle space towards a more desirable region, e.g. towards
the closest point on the boundary ofC-Obstacle or the medial
axis of the free space.

However, the retraction step can be non-trivial. For ex-
ample, computing the closest boundary point for an in-
colliding configuration boils down to penetration depth com-
putation, which has high complexity [30]. Other algorithms
use heuristics to compute samples near the boundary ofC-
Obstacle space or near approximate medial axis [1], [23],
[28]. These methods are mainly limited to closed models and
are prone to robustness problems. Other methods perform
contact space planning, i.e. generate more samples that touch
the boundaries ofC-Obstacles [21], [22]. Based on efficient
penetration depth computation, Zhang et al. [31] present a
retraction-based planner for rigid models. [22], [31] search
within the contact space randomly for a new retraction
sample, but mainly work well for rigid robots.

III. RETRACTION-BASED RRT PLANNER

In this section, we present our modified RRT planner. We
first introduce the optimization-based retraction algorithm
and then use it to improve the performance of RRT planners
in narrow passages. Given a randomly generated sample inC-
Obstacle space, our algorithm retracts to the closest pointon
the boundary ofC-Obstacle space. The basic idea is similar
to [1], [31]. The main difference lies in how we utilize the
workspace information to perform iterative optimization for
high DOF articulated models. Moreover, our approach can
handle narrow passages that are caused by obstacles as well
as self-collisions of the robot within the single retraction
framework.

A. Notation and Definition

We use following notations and symbols in the paper:
C configuration space orC-Space, includes severalC-

Obstacles and the free spaceCfree.
Ccont the contact space, the boundaries ofC-Obstacles.
q configuration for a robot;q ∈ C.
dq variation of q in the C-Space; also a control term

that describes how to changeq each extension step.

B. Retraction-Step

As shown in Fig. 1(a), given an in-colliding sampleqr,
the retraction step attempts to compute the closest boundary
point qm, which can be formally defined as

qm ≡ q∗ = argmin
q∈Ccont

δ(q,qr), (1)

(a) qr is an in-colliding sample (b) qr is free but qn qr is not CCD free

qcqn

qr

qi
qd

Obstacle

qcqn

qr

qd

Obstacle

qm

qi

(c) qr is an in-colliding sample (d) qr is free but qn qr is not CCD free

qn

qr

qc

qd

C-Obstacle

contact contact

(e) retraction for self-contact

qn qcqr qd
qm or

qd qr is
free

qn

qr

qc

qm

qd

qi

C-Obstacle

contact plane at qc

contact space

Fig. 1. (a) Given an in-colliding sampleqr , retraction tries to move it
to the closest pointqm ∈ Ccont by iterative retraction-step. (b) Ifqr

is collision-free but can not connect toqn by direct extension, we also
perform retraction forqr . (c) and (d) show the retraction computation in
the workspace. (e) shows the retraction process for a self-collision. qn has
the red (right) chain in front of the black (left) one whileqr ’s case is just
the opposite.qr andqn can not connect to each other due to self-collisions.
Retraction makes the red chain slide over black one and creates retraction
samples likeqc, qd. Retraction stops onceqd can connect toqr or a local
minimum qm is reached.

whereδ is a distance metric defined inC-Space. The choice
of a suitable metric is important but difficult. For rigid
models,DISP metric, which does not involve any weighting
factor, is used in [31]. For articulated models there is no
such an equivalent metric:DISP metric does not have a
closed form to compute for articulated models and therefore
can not be used for our optimization algorithm. Moreover,
a weighted Euclidean metric is prone to the values of
different weights. Therefore we simply use the norm-2 metric
δ(q,qr) = ‖q − qr‖2, which is simple and works well on
our benchmarks.

As shown in Fig. 1(a), in order to retract an in-colliding
sampleqr, we start with a non-colliding sampleqn (usually
the nearest node in the RRT-tree): its projection on the
contact space is the initial guessqc, which is pushed into
a setS. Next we perform the following steps iteratively:

1) Perform contact query forqc, i.e. compute the closest
feature pairs that cause the contact, including robot’s
self-collisions and collisions with the obstacles.

2) Use constrained optimization to compute a configura-
tion qi nearest toqr within qc’s neighborhood.

3) Project qi onto the contact space and computeqd,
which is the new retraction sample. Pushqd into S.

4) Assignqc = qd and go to step 1.

These steps are repeated until the distance toqr can not be
further reduced, which means a local minima has been found
or the maximum number of iterations have been performed.
All the retraction samples are collected in a setS, which is

used by our planner in Sec. III-C.
In step 1, we perform the contact query. Unlike the rigid

models, articulated models can have self-collisions, which
makes the topology ofC-Obstacle space more complex.
As Fig 1(e) shows, there is no obstacle betweenqr and
qn, but these two samples can not be connected by linear
interpolation inC-Space due to self-collisions. The retraction
step locates the two components of the articulated model that
are in-contact, slides them over each other and finally finds
a local collision-free path betweenqr andqn. More details
about self-collisions are given in Sec. VI-A.

We next describe the constrained optimization in step 2.
We first calculate a linear approximation of the contact space
by the tangent space atqc and then try to compute aq within
the tangent space that minimizesδ(q,qr).

We first formalize the tangent space constraint. Suppose
the contact query in step 1 reportsN contacts, each with
a contact positionci and a contact normalni, where1 ≤
i ≤ N . ni and ci define a workspace tangent space at the
i-th contact point. When robot’s configurationq changes, the
contact positions will also modify, but we constrain them to
stay within the original tangent space:

Ji dq = d ci (2)

nT
i d ci = 0 (3)

whereJi is the3× |C| Jacobian matrix for contact position
ci when robot is in current configurationq. Therefore, the
tangent space constraint forci can be represented as

Kdq = 0, (4)

whereK = [KT
1 , ...,KT

N]T is thecontact matrix, andKi =
nT

i Ji. Then Eq. 1 can be approximated by

q∗ = min
K dq=0

δ(q,qr) (5)

Next we formalize the objective function. Instead of find-
ing the optimalq∗ for Eq. 5, we try to find the optimal
control dq∗ instead (i.e. its integration output

∫

dq∗ =
q∗). This approach does not solve the original optimiza-
tion equation (Eq. 5) but it is more convenient for our
tangent constraint. The new objective function is(dq −
dqdesire)

T (dq−dqdesire), wheredqdesire = α(qr −qc).
This can be viewed as a simple feed-back control: where
the initial guessqc is far from the target, we hope that the
robot moves faster, otherwise it should move slower to avoid
overshooting. The actual controldq should approximate the
desired controldqdesire as much as possible. As a result the
local constrained optimization in step 2 can be formalized as:

dq∗ = argmin
K dq=0

(dq− dqdesire)
T (dq− dqdesire). (6)

According to first-order necessary condition for equality
constraints [2],dq∗ satisfiesλ

T∇(Kdq) = ∇[(dq −
dqdesire)

T (dq − dqdesire)]. Overall, the optimal control
could be expressed as:

dq∗ = (I−K†K) dqdesire = α(I−K†K)(qr − qc), (7)

Fig. 2. (a) Standard RRT-extension grows the RRT-tree T fromqn to
qr , the extension is truncated when meeting the obstacles and stops at
qc ∈ Ccont. (b) If qr is in-colliding, retraction-based extension creates
a sequence of contact samplesS = {qc,qd, ...,qm}. RRT tree can grow
towardsqr closer. (c) If qr is non-colliding, but segmentqrqn is not
collision-free, retraction is executed similarly.

whereI is unit matrix andK† is the pseudo-inverse ofK.
Then the configurationqi in step 2 can be computed as

qi = qc + dq∗ (8)

andα can be used to control the stepsize of each retraction.
If qr is in free space, but the segmentqrqn is not

collision-free, we can also apply the retraction strategy.As
Fig. 1(b) shows, we perform retraction similarly, except that
for each retraction sampleqd, we check whether it can
connect toqr without collisions. Once such a configuration
is found, we stop the iterative step and addqr into setS.

For articulated models, we must handle joint limits care-
fully. Suppose the upper and lower joint limits for the
articulated model arequpper and qlower, respectively. If
some joints ofqd are out of these limits, we update the
desired control todqdesire = α(qr − qc) + β[(qupper −
qd)

− + (qlower − qd)
+], where (·)+ = max(·, 0) and

(·)− = min(·, 0). Next we computeqd again, which is very
fast as all the matrixes can be reused and only one extra
matrix-vector multiplication is needed. If the newqd still
violates the limits, we just truncate to remain within the joint
limits.

C. Retraction-Based RRT Planner

In this section, we use the retraction algorithm to improve
the performance of RRT. Our new RRT-planner is designed
for articulated models and retracts many of the generated
samples including ones that belong to free space.

The RRT algorithm [16] explores the freeC-Space by
randomly sampling and building a RRT-tree. Multiple trees
are also used in some variations of RRT, e.g. Bi-RRT [11].
The RRT algorithm starts with a treeT with a root node, then
it adds more nodes into the tree iteratively by a tree extension
step. As Fig. 2(a) shows, standard RRT extension selects
a nodeqn in the tree that is nearest to a random sample
qr and attempts to extend the tree fromqn towardsqr by
connecting them with a straight line in theC-Space. However,
the obstacles result in a truncated RRT-extension: i.e. the
extension will stop atqc, the first in-contact configuration
betweenqn andqr. If qn is itself a configuration inCcont,
then the RRT tree stays the same.

Our retraction-based extension algorithm can improve the
performance of RRT algorithm by enabling RRT tree to
explore free space more efficiently. As shown in Fig. 2(b)(c),
when extension is interrupted by obstacles, retraction strategy
helps to create samples along the obstacles and to grow
the RRT tree towardqr. There are several benefits of this
enhanced scheme: First, more samples are created in and near
the narrow passages; Secondly, in free environment, RRT
implicitly biases for unexplored area and retraction helps
RRT to keep such property when obstacles exist. We further
analyze these behaviors in Sec. V.

IV. RETRACTION-BASED DECOMPOSITIONRRT

PLANNER

In this section we present a retraction algorithm for a
decomposition RRT planner for high-DOF models. We first
briefly introduce a decomposition planner. Next we combine
our optimization-based retraction algorithm into this decom-
position planner.

A. Decomposition Planner

Our basic decomposition planner is based on prior ap-
proaches [24] and [32]. For a robot systemR with D DOFs,
we decompose it intoM parts:R = {R1, ..., RM}, with Cj
as the configuration space for subsystemRj with Dj DOFs
and

∑M

j=1
Dj = D. The system configuration spaceC is

the joint configuration of allM robots:C = C1 × ...× CM .
Each subsystem can be regarded as a single robot in a multi-
robot system [24] or one part of an articulated robot [32].
The configuration of the system isq = {q1, ...,qM}, where
qj ∈ Cj is the configuration for subsystemRj . qinit and
qgoal are the initial and goal configurations respectively.

As Algo. 1 shows, the planner computes a collision-free
path using incremental steps: in thej-th step it computes
a collision-free pathτj for a merged subsystem̃Rj =
{R1, ..., Rj}. Whenj = 1, τ1 is computed forR̃1 = R1 with
standard RRT algorithm. In the following steps,τj is com-
puted by a special RRT algorithm shown in Fig 3. Notice that
R̃j = {R̃j−1, Rj} and τj−1 is already a collision-free path
for R̃j−1, we use a greedy bias similar to [24], [32]:̃Rj−1

will be constrained onτj−1 and only Rj ’s configuration
allows random sampling. As a result, the planning dimension
is reduced from

∑j

k=1
Dk to 1 + Dj . Such special RRT

can be viewed as planningRj regardingR̃j−1 as moving
obstacles.τj−1 is called theguiding pathfor R̃j [32], which
is parameterized over[0, 1], i.e. τj−1 = τj−1(s), s ∈ [0, 1].

These methods can work well in many cases. However,
the guiding path bias is a greedy strategy and the overall
algorithm may fail to compute a collision-free path. For
example, moving obstaclẽRj−1’s trajectoryτj−1 may make
a very narrow passage forRj or block it. In order to handle
this problem, we can useperturbation[32] or decomposition
adjustmentpresented in Sec. VI-A.
B. Retraction-Step

As Fig. 3 shows, the retraction for a decomposition
planner is similar to that for RRT planner, except that we
must consider the guiding path constraint. Suppose we are

Algorithm 1 : Basic Decomposition Planner

Input : decomposition profile:R = {R1, R2, ..., RM}
init and goal configurationqinit andqgoal

Output : a collision-free pathτ in C
begin

τ1 ← RRT(C1, q1
init, q1

goal)
if τ1 = NIL then

return FAILURE

for j = 2 to M do
τj ← RRTWITHGUIDINGPATH([0, 1]× Cj ,
τj−1, (0, qj

init), (1, qj
goal))

if τj = NIL then
return FAILURE

return τ = τM

end

computing collision-free pathτj for merged systemR̃j =
{R̃j−1, Rj}. The configuration for̃Rj can be represented as
q̃ = (qprev,qcur), whereqprev andqcur are configurations
of R̃j−1 and Rj respectively.qprev is one point on the
guiding pathτj−1(s) and qcur is a random sample inCj .

Therefore we havẽq =

(

τj−1(s)
qcur

)

. We also define a

(Dj+1)-dim vectorq̆ =

(

s

qcur

)

which is one-to-one related

with q̃. The resulting algorithm is similar to the4 steps in
Sec. III-B, but there are some differences:

The first difference is with respect to contact query for
q̃c. Only the contacts betweenRj and obstacles or̃Rj−1 are
needed to be checked, becauseτj−1 is already collision-free
and guiding path constraint requires̃Rj−1’s configuration
lying on τj−1 during the retraction step.

The tangent constraint is also different. Asτj−1(s) is
a polygonal line inC-Space, its derivatived

dt
τj−1(s) is a

staircase function:qprev changes with a constant ratio within
each path segment. Suppose such rate for segment containing
τj−1(sc) is v (refer to Fig 3(b)), Eq. 2 can be updated as:

Ji d q̃ = (Jprev
i ,Jcur

i)

(

dqprev

dqcur

)

= (Jprev
i ,Jcur

i)

(

d sv

dqcur

)

= d ci

(9)

Combined with Eq. 3, the tangent constraint Eq. 4 becomes

K

(

d s

dqcur

)

= Kd q̆ = 0, (10)

whereK = [KT
1 , ...,KT

N] is the contact matrixin decom-
posed case, andKi = (nT

i J
prev
i v,nT

i Jcur
i).

Other retraction steps are similar to Sec. III-B: we also

define a desired controld q̆desire =

(

α1(sr − sc)
α2(qr − qc)

)

and the

optimal control will bed q̆∗ = (I−K†K) d q̆desire. Finally,
the retraction result on the tangent space isq̆i = q̆c + d q̆∗,
and we pullback it ontoC̃j and getq̃i. q̃i’s projection on

guiding path�j-1

�j-1

(Sr , qr)

(Sn , qn)

(Sc ,qc)(Sd ,qd)
segment contains Sc

(b) retraction for decomposition-based planner: a 2-link example

0

1 S

T

(Sn , qn)

(Sr , qr)

(Sc , qc)

Sn

Sr

Sc

(Sd , qd)Sd

Cj

(a) retraction for decomposition-based planner

Fig. 3. (a) shows retraction-based extension for decomposition plan-
ner: The horizontal plane representsRj ’s configuration spaceCj . s-axis
represents the guiding pathτj−1, s is the path’s parameterization. The
whole configuration space is[0, 1] × Cj , and one of its configuration is
q̆ = (s,q) ≡ (τj−1(s),q), whereq ∈ Cj is a projection of(s,q) onto
Cj ands represents a pointτj−1(s) on guiding path. RRT-extension tries to
connect a node on decomposed RRT tree(sn,qn) towards a random sample
(sr,qr). Due to self-collision or collision with obstacles, the extension
stops at(sc,qc), a contact state. Then a retraction in[0, 1] × Cj creates a
series of contact states(sd,qd) closer to(sr,qr). (b) shows the retraction
algorithm for a 2-link example in workspace. Here the red (upper) link is
sampled randomly and the black (lower) link is constrained on guiding path.

Ccont is the new extraction samplẽqd. We still have to
check whether̃qd is valid configuration:qc should be within
Rj ’s joint limits; sd and sc must lie in the same segment
of guiding path (this can be viewed as extra joint limits
requirement for an extra ‘joint’s). Any violation can be
resolved by the method introduced in Sec. III-B.

C. Retraction-Based Decomposition Planner

The retraction step improves Algo. 1 with a new RRT-
extension step for RRTWITHGUIDINGPATH. The new RRT-
extension is the same as the one in Sec. III-C except we
replace the RRT-extension and retraction algorithms by the
corresponding versions for the decomposition planner in
Sec. IV-B. We also discuss other improvements for decom-
position planner besides retraction in Sec. VI-A.2.

V. A NALYSIS

In this section we analyze the behavior of the retraction-
based RRT planner based on Voronoi diagram distortion.

It is well known that the behavior of RRT algorithms
can be analyzed using Voronoi diagrams [15]. As shown
in Fig. 4(a), given a tree built by the RRT algorithms, we
consider the Voronoi diagram of all the tree nodes in theC-
Space. In the RRT-extension step, in order to find the nearest
node for a random sampleqr is equivalent to find a tree
node q whose associated Voronoi cellV (q) containsqr.
Therefore the probability ofq to be selected for extension
is proportional to the volume ofV (q). As a result, RRT
planners have an implicit bias towards unexplored regions.

(a) Voronoi diagram (b) Deformed Voronoi diagram

C-Obstacle

C-Obstacle

Fig. 4. (a) shows the Voronoi diagram. The black nodes are RRT-tree nodes
and the red lines are edges between nodes. Imagine the voronoidiagram is
deformable and mark holes in places where obstacles are to be placed (the
red points). Then enlarge the hole to the shape of obstacle and deform the
diagram, we obtain (b).

Such exploring property assumes no obstacles exist so that
exploringCfree is equivalent to exploringC-Space.

When the environment contains obstacles, ideally we hope
that RRT will still bias towards unexplored regions inCfree.
However, during sampling generation and finding a tree node
nearest to the sample, the RRT algorithm simply ignores
the obstacles in the scene. Rather it takes the obstacles into
account during the extension step. As a result, if a tree node
q is selected for extension, there is high probability that the
Voronoi cellV (q) has a large volume, butV (q)

⋂

Cfree may
still be small, especially in narrow passages. In other words,
when there are obstacles in the scene, RRT’s Voronoi bias
still prefers unexploredC-Space but not unexploredCfree,
thoughC-Space is now larger thanCfree.

Our retraction strategy can improve the performance of
RRT planner in an environment with obstacles. We first
analyze what is the ideal RRT-extension when obstacles
exist and then show that our retraction approach is a good
approximation of the ideal case. We start from the RRT-tree
and its associated Voronoi diagram(Fig. 4(a)). Next we try
to embedC-Obstacles into the Voronoi diagram. Imagining
the diagram is deformable (i.e. edges and cells) and we mark
holes in places whereC-Obstacles are going to be placed (red
points in Fig. 4(a)). Then we extend the holes to the shapes
of C-Obstacles. This will distort the diagram as shown in
Fig. 4(b). Since we use an elastic deformation, the distortion
function f is a topological transformation(or homeomor-
phism) [17]. After the distortion function has been applied,
the new cells of the partition and tree nodes will move
away fromC-Obstacles and tree edges will become curved.
However, homeomorphism ensures that the curved tree edges
with stay within the free space (Fig. 4(b)) and enter/leave the
same cells by the same facets. These curved edges are the
ideal RRT-extension in the presence of obstacles, and the
difference between basic extension is that tree nodes must
be connected by curved interpolation, especially for those
edges in high-distortion regions, like narrow passages. These
curved cells are no longer strict Voronoi cells, in fact theyare
closely related to theLandmark Voronoi Complex[6], which
is the natural extension of the geometric Voronoi diagram to
the case of a graph with the shortest-path metric.

Next we show that the retraction-step approximates the
ideal extension. First, the retraction step is executed when

RRT-extension is truncated and we add more samples near
the contact space. As regions nearC-Obstacles always have
high distortion (Fig. 4(b)), the retraction step uses truncation
as a heuristic to detect a high-distortion region. Secondly,
retraction tries to find a node in free space nearest to random
sample by searching along contact space. Ideal extension
does similar thing: for cells nearC-Obstacles (the shaded
cells in Fig. 4(b)), tree nodes will move to some place near
C-Obstacles that is nearest to their original position. There-
fore, retraction-based extension implicitly uses the changed
Voronoi bias and can help RRT planner to perform better in
narrow passages.

VI. I MPLEMENTATION AND RESULTS

In this section, we present results of our retraction-
based planner on articulated robots. We first discuss some
implementation issues. Then we highlight the performance
of our new planner on a set of benchmarks with narrow
passages. We show that for the basic RRT planner and the
decomposition planner, the retraction algorithm can improve
their efficiency obviously. All the timings reported here were
taken on a laptop with 2.8GHz CPU and 2GB memory.

A. Implementation

1) Retraction Algorithm: We use PQP [14] [31] for
collision detection and contact query. Based on the three
types of contacts (vertex-vertex, vertex-face and edge-edge)
PQP reported, we compute the contact position and contact
normal for each contact, which is used in the retraction step
in Sec. III-B and Sec. IV-B. Besides reporting contact with
the obstacles, we also check for any self-collision in the
articulated model. However, we pre-filter these contacts to
remove some of the self-contacts. For example, for a human
shape robot we will not report the self-contact between left
hand and left arm, which are links adjacent to each other.
Thus we manually decompose robot into several parts, and
filter the self-contacts within the same parts. This strategy
can improve algorithm’s robustness.

Our approach works on triangle soup models, which may
not be a smooth manifold. Thusqi in Eq. 8 may be in-
colliding due to surface noise. This can also be caused by
concave geometry ofC-Obstacle atqc. This will make the
projection operation (step 3, to getqd) difficult. Moreover,
our motion planner tries to connect each retraction sample
qd to the RRT-tree, but the manifold noise or local convex
geometry ofC-Obstacle atqd will make connecting two
nearby contact samples by linear interpolation, a part of RRT-
extension, rather difficult. Our solution is to relax the tangent
constraints in Eq. 3 a little, i.e. change it tod ci · ni = ǫi,
where ǫi is a small positive real number. As a result, the
optimal control in Eq. 7 will bedq∗ = K†ǫ + α(I −
K†K)(qr − qc). If this relaxation still does not work, we
use thevertex enhancement[9] method to generate additional
samples aroundqc or qd.

2) Decomposition Planner:Here we introduce some
methods other than retraction that are used by our implemen-
tation to improve the efficiency of decomposition planner.

First we replace the Euclidean metric by a semi-geodesic
metric. Euclidean distance between two samples(s1,q1) and
(s2,q2) is ‖τ(s1) − τ(s2)‖

2
2 + ‖q1 − q2‖

2
2. However this

metric does not bias enough for guiding path, e.g. when
a guiding pathτ looks like a loop inC-Space, the two
endpoints have small Euclidean distance, but the guiding
path implies they should be very far away. Instead we use
the semi-geodesic distance(

∫ s2

s1

τ ′(s)ds)2+‖q1−q2‖
2
2. This

metric considers the guiding path constraint and can measure
distance better.

Decomposition planner is greedy, therefore it is possible
that the guiding path constraint will make it hard to compute
a collision-free path after adding new subsystem of robot.
For example, ifτj−1 is not suitable,[0, 1] × Cj may not
contain a collision-free path. Our solution is automatically re-
organize the overall decomposition. We record the maximum
and minimums values of current RRT-tree’s nodes, whose
configuration is of the form(s,q). If the two values do not
come close toward each other for a long time, we guess
guiding pathτj−1 is not good. Then we abandonτj−1 and
merge Rj and Rj−1 into one system and execute RRT
again in configuration space[0, 1]×Cj−1 ×Cj with τj−2 as
guiding path. In the worst case, the decomposition planner
will degrade into a basic RRT planner.

B. Results

We test our retraction-based algorithm on a set of bench-
marks. In our experiment, we run every benchmark10 times
with different random seed and compute the average running
time. We use two criteria to compare the performance be-
tween planners with and without retraction: 1) planning time
2) ND-ratio, which is the ratio of number of non-degraded
RRT-extensions (i.e. not the no-progress extension) to the
number of all RRT-extensions. We prefer a planner with
lower planning time and higher ND-ratio, which means more
RRT-extensions will contribute to the free-space exploring
and fewer computational capability is wasted on unsuccessful
attemps. ND-ratio is a rough measurement for performance,
though faster algorithms may have lower ND-ratio because
they can find a path with only a few RRT-extensions.

In our experiment, there are3 types of planners: Whole
body planner is the basic RRT planner without decomposi-
tion technique, which is discussed in Sec. III. Decomposition
planner is discussed in Sec. IV. Designed+Decomposition
planner is a special decomposition planner: the trajectory
of some of its DOFs (e.g. lower body for human robot) is
predesigned and planner aims at computing the trajectory for
other DOFs with the predetermined path as dynamic obsta-
cles. This special planner is especially useful for computer
animation, where animator can design the trajectory for some
parts of a human-like articulated model and use planner to
compute trajectory for remain parts. For each type of planner,
we compare4 types of variations: RRT, RRT with retraction
(RRT-R), BiRRT, BiRRT with retraction (BiRRT-R).

In the first bridge benchmark (Fig. 5) a hyper-redundant
robot (HRR) tries to go through a hole and brackets of bridge.
We only test our retraction-based basic RRT planner here.

Fig. 5. Bridge: 40-DOF HRR robot tries to go through the hole and brackets
of bridge. Retraction algorithm’s maximum speedup is 4 times.

Fig. 6. Picking Object: 41-DOF human-shape robot stands up and places
object on the table. Retraction algorithm’s maximum speedup is80 times.

Fig. 7. Placing Object: 41-DOF human-shape robot picks the book and
puts it on the shelf. Retraction algorithm’s maximum speedup is4 times
and can succeed when non-retraction planner fails.

Fig. 8. Bending: 41-DOF human-shape robot bends and stretches to put
the tool inside the car. Retraction algorithm’s maximum speedup is 2 times
and can succeed when non-retraction planner fails.

In other 3 benchmarks, a humanoid robot tries to execute
some tasks in constrained environments. We compare all
3 types of planners for the first two benchmarksObject
Picking (Fig. 6) andObject Placing(Fig. 7), because the
constrained environments make it possible for planner to
find a reasonable trajectory for lower body. For theBending
(Fig. 8) benchmark, complete planning can not find a good
path for lower body, so we only test decomposition planner
on it. The complexities of environments are shown in Table I.
All the four benchmarks have narrow passages: inbridge
hole and brackets of bridge make narrow passages; inObject
Pickinggrate, table and ceiling are main narrow passages for
arm and head; inObject Placing, grate, lamp and bookshelf
cause narrow passages for arms; inBending, car and the chair
in car make environment challenging.

The planning results of all the benchmarks are shown in
Figs. 5, 6, 7 and 8. The performance results are summarized
in Tables II, III, IV and V. According to the tables, our retrac-
tion algorithm can significantly improve the performance of
RRT planners in almost all cases with narrow passages. The
ND-ratio of retraction-based planners are also higher, which
means fewer degraded RRT-extension and makes planning
more efficient.

From the result we can find that our retraction-based
algorithm usually provide much larger speedup for whole

Bridge Picking Placement Bending

#obstacles 1 4 5 7
#DOF 40 41 (27∗) 41 (27∗) 41

#polygons 31718 7967 52810 372609

TABLE I

GEOMETRIC COMPLEXITY OF OUR BENCHMARKS(∗ ARE FOR

PREDESIGNED+DECOMPOSITION PLANNER).

Whole body RRT RRT-R BiRRT BiRRT-R
time (sec.) 30.515 8.031 25.109 10.140

ND ratio (%) 54.55 51.82 42.61 49.74

TABLE II

PERFORMANCE FOR BRIDGE BENCHMARK.

Whole body RRT RRT-R BiRRT BiRRT-R
time (sec.) 33.24 0.417 2.069 0.339

ND ratio (%) 38.65 56.71 30.69 67.53

Decomposition RRT RRT-R BiRRT BiRRT-R
time (sec.) 13.76 2.188 0.974 0.284

ND ratio (%) 66.17 91.55 66.48 86.27

Designed+Decomposition RRT RRT-R BiRRT BiRRT-R
time (sec.) 2.969 2.128 1.583 1.195

ND ratio (%) 80.95 93.02 87.20 91.03

TABLE III

PERFORMANCE FOR PICKING OBJECT BENCHMARK.

Whole body RRT RRT-R BiRRT BiRRT-R
time (sec.) FAIL 62.31 43.20 24.97

ND ratio (%) <10 31.23 22.15 44.50

Decomposition RRT RRT-R BiRRT BiRRT-R
time (sec.) FAIL 35.53 2.514 3.126

ND ratio (%) <10 68.58 46.12 55.55

Designed+Decomposition RRT RRT-R BiRRT BiRRT-R
time (sec.) 28.26 16.05 9.730 2.402

ND ratio (%) 71.00 81.16 68.01 78.57

TABLE IV

PERFORMANCE FOR PLACING OBJECT BENCHMARK.

Decomposition RRT RRT-R BiRRT BiRRT-R
time (sec.) FAIL 71.19 17.03 9.765

ND ratio (%) <10 36.47 16.41 28.77

TABLE V

PERFORMANCE FOR BENDING BENCHMARK.

body planner than for decomposition-based planner, for
RRT planner than for Bi-RRT planner. It is reasonable:
Both decomposition and RRT-connect algorithms are special
techniques designed to improve RRT planner’s efficiency.
They already add some extra samples due to their own
special biases to help robot go through narrow passages.
Many of these extra samples may also be the retraction
samples created by our retraction-based algorithms. In one
word, RRT-connect or decomposition techniques have al-
ready provided part of retraction algorithm’s benefit, so our
method’s benefit is not so obvious when combining with
them. However, even for these cases, our new planner can
still show an acceleration about 2-5 times. For RRT or whole
body planner, the acceleration ratio is about 5-80 times.

VII. L IMITATIONS

Our method has a few limitations. First, our method
behaves well when obstacles and links of articulated models
are locally convex near the contact points. If local convex
property holds, moving the links on contact points’ tangent

space will not create new contacts and collisions because
there always exists a local separating plane between two non-
colliding convex shapes. However, if locally convex property
does not hold,qi can have collision which is difficult to
resolve.

Secondly, the retraction algorithm needs to compute the
normals at the contacts, which is sensitive to the surface’s
quality. As a result, the performance of the retraction algo-
rithm may be sensitive to the smoothness of the surface.

Another disadvantage is that we try to keep all the contacts
on their workspace tangent planes simultaneously. However,
this is not always possible, e.g. when contact matrixK in
Eq. 4 or Eq. 10 is over-determined or the null-space ofK

is not within joint limits.
Finally, the optimization algorithm used for retraction

computation may be trapped in local minima. Compared to
the rigid body case [31],C-Space of an articulated model
can have much higher dimension, and so the local minima
problem is more serious. Moreover, the Euclidean metric
used by our optimization does not consider obstacles, which
also adds to the difficulty of dealing with local minima.

VIII. C ONCLUSIONSAND FUTURE WORK

In this paper, we present an optimization-based retraction
algorithm for articulated models to improve the performance
of RRT and decomposition planners. Our algorithm retracts
randomly generatedC-Obstacle samples so that they can be
more likely to be connected to the RRT-tree. We apply our
algorithm for articulated models with high DOFs for chal-
lenging planning scenarios. The experimental results show
that our algorithm can efficiently explore narrow passages
with significant speedups.

There are many avenues for future work. We are interested
in analyzing our retraction-based planners using different
distance metrics. We are also interested in usingLandmark
Voronoi Complexto design new PRM or RRT based planners
and analyze their performances for narrow passages.
Acknowledgements. This research was supported in
part by ARO Contract W911NF-04-1-0088, NSF awards
0636208, 0917040 and 0904990, DARPA/RDECOM Con-
tract WR91CRB-08-C-0137, and Intel.

REFERENCES

[1] N. Amato, O. Bayazit, L. Dale, C. Jones, and D. Vallejo, “OBPRM:
An obstacle-based prm for 3d workspaces,”Proceedings of WAFR, pp.
197–204, 1998.

[2] A. Antoniou and W.-S. Lu,Practical Optimization: Algorithms and
Engineering Applications. Springer, 2007.

[3] H.-L. Cheng, D. Hsu, J.-C. Latombe, and G. Sánchez-Ante, “Multi-
level free-space dilation for sampling narrow passages in PRM plan-
ning,” in Proc. IEEE Int. Conf. on Robotics & Automation, 2006, pp.
1255–1260.

[4] S. Dalibard and J.-P. Laumond, “Control of probabilisticdiffusion
in motion planning,” in Proc. of Eighth Workshop on Algorithmic
Foundations of Robotics, 2008.

[5] M. Erdmann and T. Lozano-Perez, “On multiple moving objects,”
Proc. of IEEE Conf. on Robot. & Autom., pp. 1419–1424, 1986.

[6] Q. Fang, J. Gao, L. J. Guibas, V. Silva, and L. Zhang, “Glider: Gradient
landmark-based distributed routing for sensor networks,” in Proc. of
the 24th Conference of the IEEE Communication Society (INFOCOM),
2005, pp. 339–350.

[7] M. Foskey, M. Garber, M. Lin, and D. Manocha, “A voronoi-based
hybrid planner,”Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, 2001.

[8] D. Hsu, J. Latombe, and H. Kurniawati, “On the probabilistic foun-
dations of probabilistic roadmap planning,” inProc. Int. Symp. on
Robotics Research, 2005.

[9] L. Kavraki, P. Svestka, J. C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configurationspaces,”
IEEE Trans. Robot. Automat., pp. 12(4):566–580, 1996.

[10] J. Kuffner, “Goal-directed navigation for animated characters using
real-time path planning and control,” inIn Proceedings of Captech’98.
Springer-Verlag, 1998, pp. 171–186.

[11] J. Kuffner and S. LaValle, “RRT-connect: An efficient approach to
single-query path planning,” inProc. IEEE International Conference
on Robotics and Automation, 2000.

[12] H. Kurniawati and D. Hsu, “Workspace-based connectivity oracle:
An adaptive sampling strategy for prm planning,” inProc. of 7th
International Workshop on the Algorithmic Foundations of Robotics,
2006.

[13] A. Ladd and L. Kavraki, “Using motion planning for knot untangling,”
International Journal of Robotics Research, vol. 23, no. 7-8, pp. 797–
808, 2004.

[14] E. Larsen, S. Gottschalk, M. Lin, and D. Manocha, “Fast proximity
queries with swept sphere volumes,” Department of Computer Science,
University of North Carolina, Tech. Rep. TR99-018, 1999.

[15] S. M. LaValle, Planning Algorithms. Cambridge University Press
(also available at http://msl.cs.uiuc.edu/planning/), 2006.

[16] S. M. LaValle and J. J. Kuffner, “Rapidly-exploring random trees:
Progress and prospects,”Robotics: The Algorithmic Perspective (Proc.
of the 4th Int’l Workshop on the Algorithmic Foundations of Robotics,
2000.

[17] J. R. Munkres,Topology. Pearson Education, 2000.
[18] J. Pettre, J.-P. Laumond, and T. Simeon, “3d collision avoidance for

digital actors locomotion,” 2003, pp. 400–405.
[19] C. Pisula, K. Hoff, M. C. Lin, and D. Manocha, “Randomizedpath

planning for a rigid body based on hardware accelerated voronoi
sampling,”Proc. of International Workshop on Algorithmic Foundation
of Robotics, 2000.

[20] B. Raveh, A. Enosh, O. Schueler-Furman, and D. Halperin,“Rapid
sampling of molecular motions with prior information constraints,”
PLoS Comput Biol, vol. 5, 2009.

[21] S. Redon and M. Lin, “Practical local planning in the contact space,”
Proc. of IEEE ICRA, 2005.

[22] ——, “A fast method for local penetration depth computation,” Journal
of Graphics Tools, vol. 11, no. 2, pp. 37–50, 2006.

[23] S. Rodriguez, X. Tang, J. Lien, and N. Amato, “An obstacle-based
rapidly-exploring random tree,” inProceedings of International Con-
ference on Robotics and Automation, 2006, pp. 895–900.

[24] M. Saha and P. .Isto, “Multi-robot motion planning by incremental
coordination,” inProc. of IROS, 2006, pp. 5960–5963.

[25] M. Saha, J. Latombe, Y. Chang, Lin, and F. Prinz, “Findingnar-
row passages with probabilistic roadmaps: the small step retraction
method,”Intelligent Robots and Systems, vol. 19, no. 3, pp. 301–319,
Dec 2005.

[26] G. Song and N. M. Amato, “Using motion planning to study protein
folding pathways,” inInt. Conf. Comput. Molecular Biology, 2001, pp.
287–296.

[27] S. Thomas, G. Song, and N. M. Amato, “Protein folding by motion
planning,” Physical Biology, vol. 2, pp. 148–155, 2005.

[28] S. A. Wilmarth, N. M. Amato, and P. F. Stiller, “Motion planning for
a rigid body using random networks on the medial axis of the free
space,”Proc. of the 15th Annual ACM Symposium on Computational
Geometry (SoCG’99), pp. 173–180, 1999.

[29] E. Yoshida, “Humanoid motion planning using multi-level dof ex-
ploitation based on randomized methods,” 2005, pp. 3378–3383.

[30] L. Zhang, Y. Kim, and D. Manocha, “A fast and practical algorithm
for generalized penetration depth computation,” inProceedings of
Robotics: Science and Systems, Atlanta, GA, USA, June 2007.

[31] L. Zhang and D. Manocha, “An efficient retraction-basedRRT plan-
ner,” in IEEE International Conference on Robotics and Automation
(ICRA), 2008, pp. 3743–3750.

[32] L. Zhang, J. Pan, and D. Manocha, “Motion planning of human-
like robots using constrained coordination,” inIEEE-RAS International
Conference on Humanoid Robots, 2009.

