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Abstract—We present a new retraction algorithm for high
DOF articulated models and use our algorithm to improve the
performance of RRT planners in narrow passages. The retrac-
tion step is formulated as a constrained optimization problem
and performs iterative refinement on the boundary of C-
Obstacle space. We also combine the retraction algorithm with
decomposition planners to handle very high DOF articulated
models. The performance of our approach is analyzed using
Voronoi diagrams and we show that our retraction algorithm
provides a good approximation to the ideal RRT-extension in
constrained environments. We have implemented our algorithm
and tested its performance on robots with more than 40 DOFs
in complex environments. In practice, we observe significant
performance (2-80X) improvement over prior RRT planners
on challenging scenarios with narrow passages.

I. INTRODUCTION

generalize our retraction algorithm to planners that use de
composition technigues to deal with very high DOF models.
We also analyze our retraction algorithm based on Voronoi
diagrams and show that our retraction is a good approxima-
tion for ideal RRT-extension in constrained environmews.
have implemented our algorithm and tested its performance
on models with 40 DOFs in complex environments with
narrow passages. In practice, our algorithm can signifigant
improve the performance by 2-80 times as compared to RRT
planners.

The rest of paper is organized as follows. In Sec. II, we
briefly survey the related work. We present our optimization
based retraction algorithm and combine it with RRT planners
in Sec. Ill. Sec. IV describes a modified algorithm to
combine our retraction step with decomposition planners to

Sample-based planning has been widely used to corhandle very high DOF models. We analyze the performance

pute collision-free path for robots in complex environngent

of our planners using Voronoi diagrams in Sec. V. We

These methods generate samples with randomized tedliscuss its implementation and highlight the performance o

nigques, and connect them using local planning methods. T

béferent benchmarks in Sec. VI.

main goal is to capture the connectivity of the free space of a

robot’s configuration space by using tree or graph strusture

such as probabilistic roadmaps (PRMs) or rapidly-exphprin

Il.
In this section, we give a brief overview of related work in

RELATED WORK

random trees (RRTs) [15]. However, the performance ahotion planning for articulated models and handling narrow
sample-based planning algorithms may degrade if the frgmssages.

space has narrow passages.

In this paper, we address the problem of computing- Motion Planning for Articulated Models

collision-free motion for articulated models in constedn

There is considerable work on motion planning for articu-

environments with multiple obstacles and narrow passagdated models using sample-based planners. Some of the most
Most of the prior work on handling narrow passages hapopular algorithms are based on decomposition techniques,
been mainly limited to rigid models, e.g. [1], [8], [28], which assume that the articulated model can be decomposed
[31]. In practice, articulated models result in some addii into components with low-correlation and then use suitable
challenges with respect to sample-based motion planningtrategies to coordinate between different components [5]
First of all, the articulated models have many more degreg24], [32]. However, these methods may not work well in

of freedom (DOFs), which increase the complexity of thelealing with narrow passages. Other approaches use reduced
underlying planning problem. Secondly, the planner needdnematics [10], [18] and multi-level methods [29].

to ensure that there are no self-collisions in the robot, in For articulated models with very high dimensian {00),
addition to preventing collisions between the robot and the.g. protein chains, potential energy based approaches are
obstacles. These self-collisions can generate many small ausually used [13], [20], [26], [27]. The potential energy
isolated components in thé-Obstacle space and therebyformulation is often defined to guide the search toward a
result in additional challenges in terms of handling narrovgoal configuration.

passages. ) .

Main results: We present a new retraction-based alB- Handling Narrow Passages for Articulated Models
gorithm for articulated models and combine it with RRT Many techniques have been proposed to address the nar-
planners. We formulate the retraction step as a constrainealv passage problem for articulated models. These include
optimization problem that performs iterative refinement oradaptive sampling according to workspace information [12]
the boundary ofC-Obstacle space to compute a free-spacer sampling history [4], dilation-based approaches [35][2
configuration that is nearest to the random sample. We furthand retraction-based approaches. Dilation-based appesac



[3], [25] shrink the obstacles and thereby improve the visi- contact plage atq, a, /_\é
bility of the free space. However, these methods are mainl , o O
o . . ‘contact space . ~
limited to volumetric objects and may not be able to handle N\, =~ %, e T~
self-collisions well. Voronoi regions of workspace can be ,’/ A
used to generate samples in narrow passages [7], [19]. 9.0~ - —@dn
. . C-Obstacle C-Obstacle
C. Retraction-Based Planmng (a) g, is an in-colliding sample (b) q, is free but q,, g, is not CCD free
R

The retraction-based approaches have been widely ust
to improve the performance of sample-based planners i
narrow passages [1], [21], [23], [28], [31]. The main idea is
to retract a randomly generated configuration that lie§-in
Obstacle space towards a more desirable region, e.g. tewar
the closest point on the boundary@fObstacle or the medial
axis of the free space. Obstacle Obstacle

However, the retraction step can be non-trivial. For ex- (9. is anin-colliding sample (d) g is free but g, g is not CCD free

ample, computing the closest boundary point for an in-
colliding configuration boils down to penetration depth eom Gn G e Aa g;“g: s
putation, which has high complexity [30]. Other algorithms free

\ / & contact \ &— contact

use heuristics to compute samples near the bounda6 of
Obstacle space or near approximate medial axis [1], [23] (e) retraction for self-contact
[28]. These methods are mainly limited to closed models arféig. 1. (a) Given an in-colliding samplqy, retraction tries to move it

are prone to robustness problems. Other methods perfotfthe closest pointiy € Ceon: by iterative retraction-step. (b) I,
is collision-free but can not connect i@, by direct extension, we also

contact space planning, i.e. generate more samples that tOWerform retraction forg,.. (c) and (d) show the retraction computation in
the boundaries of-Obstacles [21], [22]. Based on efficient the workspace. (e) shows the retraction process for a s#ision. q,, has

; ; the red (right) chain in front of the black (left) one whitg-'s case is just
penetration depth computation, Zhang et al. [31] presentt%: oppositeq, andq,, can not connect to each other due to self-collisions.

retraction-based planner for rigid models. [22], [31] ®#8r Retraction makes the red chain slide over black one and sreateaction
within the contact space randomly for a new retractiosamples likeqc, qq. Retraction stops onagg can connect tey, or a local

sample, but mainly work well for rigid robots. minimum g, is reached.

dc

[1l. RETRACTION-BASED RRT PLANNER where/ is a distance metric defined #+Space. The choice

In this section, we present our modified RRT planner. Wef @ suitable metric is important but difficult. For rigid
first introduce the optimization-based retraction aldgorit models,DISP metric, which does not involve any weighting
and then use it to improve the performance of RRT plannefgctor, is used in [31]. For articulated models there is no
in narrow passages. Given a randomly generated samgle insuch an equivalent metridISP metric does not have a
Obstacle space, our algorithm retracts to the closest point closed form to compute for articulated models and therefore
the boundary of-Obstacle space. The basic idea is similafan not be used for our optimization algorithm. Moreover,
to [1], [31]. The main difference lies in how we utilize the@ weighted Euclidean metric is prone to the values of
workspace information to perform iterative optimizaticor f different weights. Therefore we simply use the norm-2 neetri
high DOF articulated models. Moreover, our approach cah(d4,) = [la — a||2, which is simple and works well on
handle narrow passages that are caused by obstacles as ®#8fl benchmarks.
as self-collisions of the robot within the single retrantio As shown in Fig. 1(a), in order to retract an in-colliding
framework. sampleq,., we start with a non-colliding samplg, (usually
. _ the nearest node in the RRT-tree): its projection on the
A. Notation and Definition contact space is the initial guesg, which is pushed into

We use following notations and symbols in the paper: 3 setS. Next we perform the following steps iteratively:

C configuration space d@f-Space, includes sever@i

Obstacles and the free spaCg.c..

C.ont thecontact spacethe boundaries of-Obstacles.

q configuration for a roboty € C.

dq variation ofq in the C-Space; also a control term

that describes how to changesach extension step.

1) Perform contact query fad., i.e. compute the closest
feature pairs that cause the contact, including robot’s
self-collisions and collisions with the obstacles.

2) Use constrained optimization to compute a configura-
tion q; nearest tay, within q.’s neighborhood.

3) Projectq; onto the contact space and compuig,

B. Retraction-Step which is the new retraction sample. Pugh into S.

As shown in Fig. 1(a), given an in-colliding sampig, 4) Assignq, = qq and go to step 1.
the retraction step attempts to compute the closest boundarhese steps are repeated until the distanog,.toan not be
point q.,,, which can be formally defined as further reduced, which means a local minima has been found

(1) or the maximum number of iterations have been performed.

m = F = in 6 sUr)s . . . .
a q’ = argmin 5(q, qr) All the retraction samples are collected in a Setwhich is

qeccont



used by our planner in Sec. IlI-C.

In step 1, we perform the contact query. Unlike the rigic ‘
models, articulated models can have self-collisions, thic i~
makes the topology of’-Obstacle space more complex.T\q"
As Fig 1(e) shows, there is no obstacle betwegnand / ;
dn, but these two samples can not be connected by line
interpolation inC-Space due to self-collisions. The retraction *
step locates the two components of the articulated model tt

(a) standard RRT extension (b) retraction-based extension, (c) retraction-based extension,

are in-contact, slides them over each other and finally finc.. q.is in-colliding g is non-colliding
a local colhsm_n-_free path betweem andqy,. More details Fig. 2. (a) Standard RRT-extension grows the RRT-tree T fipmto
about self-collisions are given in Sec. VI-A. qr, the extension is truncated when meeting the obstacles ams sit

We next describe the constrained optimization in step e € Ccont- (b) If q, is in-colliding, retraction-based extension creates
X . . . a sequence of contact samplés= {qc¢,qq, ..., am }. RRT tree can grow
We first calculate a linear approximation of the contact 8paGowards g, closer. (c) If q is non-colliding, but segmen-: is not
by the tangent space qt and then try to compute@within  collision-free, retraction is executed similarly.

the tangent space that minimizé&y, q.).

We first formalize the tangent space constraint. Supposgherel is unit matrix andK' is the pseudo-inverse d&.

the contact query in step 1 reporfé contacts, each with Then the configurationy; in step 2 can be computed as
a contact positiorc; and a contact normah;, wherel <

i < N. n; andc; define a workspace tangent space at the q =qc+dq” (8)
i-th contact point. When robot’s configuratienchanges, the
contact positions will also modify, but we constrain them t
stay within the original tangent space:

d’:mda can be used to control the stepsize of each retraction.
If g, is in free space, but the segmeqtq, is not
collision-free, we can also apply the retraction stratedyy.
J;, dgq=dc; (2) Fig. 1(b) shows, we perform retraction similarly, exceptth
ndeCi -0 A3) for each retraction sampley, we check whether it can
connect toq,. without collisions. Once such a configuration
whereJ; is the3 x |C| Jacobian matrix for contact position is found, we stop the iterative step and agldinto set.S.
c; when robot is in current configuration. Therefore, the For articulated models, we must handle joint limits care-
tangent space constraint foy can be represented as fully. Suppose the upper and lower joint limits for the
articulated model ar&y,pper and qiower, respectively. If

Kdq=0, ) some joints ofqq are out of these limits, we update the
whereK = [K?, ..., KZ]7 is thecontact matrixandK; = desired control tod qacsire = a(qr — qc) + Bl(Qupper —
n’”J;. Then Eq. 1 can be approximated by qa)” + (Wower — )], Where (-)* = max(-,0) and

()~ = min(-,0). Next we computey, again, which is very
q" = K%lciflo 6(a,qr) (5) fast as all the matrixes can be reused and only one extra

matrix-vector multiplication is needed. If the newy; still
Next we formalize the objective function. Instead of find~jolates the limits, we just truncate to remain within thanjo
ing the optimalg* for Eq. 5, we try to find the optimal |imits.
control dq* instead (i.e. its integration outpufdq* =
q*). This approach does not solve the original optimizaC. Retraction-Based RRT Planner
tion equation (Eq. 5) but it is more convenient for our

tangent cTonstralnt. The nevx;] objective quct|on (Ba - e performance of RRT. Our new RRT-planner is designed
ddesire)” (A4~ d daesire), Whered Qaesire = a(dr —de)-  for articulated models and retracts many of the generated
This can be viewed as a simple feed-back control: Wheréeamples including ones that belong to free space

the initial guessy, is far from the target, we hope that the The RRT algorithm [16] explores the freé-Space by

robotrr]nO\t/gs feEI'_s;er, o';helr\leet ';Shoﬁld lrgove sloyverttot?]vmpandomly sampling and building a RRT-tree. Multiple trees
overshooting. The actual contrdiq should approximate the are also used in some variations of RRT, e.g. Bi-RRT [11].

desired contr.oH Qdesire AS r.nuc.h as possible. As a resylt theThe RRT algorithm starts with a trééwith a root node, then
local constrained optimization in step 2 can be formalized it adds more nodes into the tree iteratively by a tree extensi
dq* = argmin(d q — d Quesire)” (dq — dQuesire). (6) St€P- As Fig. 2(a) shows, standard RRT extension selects
Kdq=0 a nodeq, in the tree that is nearest to a random sample
According to first-order necessary condition for equaliydr @nd attempts to extend the tree fragp towardsq, by
constraints [2],dq* satisfiesATV(Kdq) = V[(dq — connecting them with a straight line in theSpace. Howeyer,
d Qaesire)T (A — dqgesire)]. Overall, the optimal control the ob_stacle_s result in a trun_catgd RRT—extenS|_on: i.e. the
could be expressed as: extension will stop afe, th first |n-cor_1tact gonf!guratlon
betweenq,, andq.. If q, is itself a configuration irC.:,
dq* = (I - K'K)dqgesire = a(I - K'K)(q, — q.), (7) then the RRT tree stays the same.

In this section, we use the retraction algorithm to improve



Our retraction-based extension algorithm can improve theAlgorithm 1: Basic Decomposition Planner

performance of RRT algorithm by enabling RRT tree t0 |npyt : decomposition profileR = {Ry, Ra, ..., Ras }

explore free space more efficiently. As shown in Fig. 2(h)(c) init and goal configurationy;,,;; and qgeq
when extension is interrupted by obstacles, retracticategy Output: a collision-free path- in C

helps to create samples along the obstacles and to growhegin

the RRT tree towardy,. There are several benefits of this 7 — RRT(C1, 4, dt,.))

enhanced scheme: First, more samples are created inand neal it . — Ny then J

the narrow passages; Secondly, in free environment, RRT L return FAILURE

implicitly biases for unexplored area and retraction helps for j =2to M do

RRT to keep such property when obstacles exist. We further 7; + RRTWITHGUIDINGPATH(([0, 1] x Cj,
analyze these behaviors in Sec. V. -1, 0, i)s (L, q?]oal))

if 7; = NIL then

L return FAILURE

. . . . return 7 =7y,
In this section we present a retraction algorithm for a gpq

decomposition RRT planner for high-DOF models. We first
briefly introduce a decomposition planner. Next we combine
our optimization-based retraction algorithm into this cdiee

IV. RETRACTION-BASED DECOMPOSITIONRRT
PLANNER

position planner. computing collision-free path; for merged systen'f%j =
{R;_1, R;}. The configuration fo?; can be represented as
A. Decomposition Planner a = (g™, "), whereq™" andq°*" are configurations

Our basic decomposition planner is based on prior a@f R; 1 and R; respectively.q?"*” is one point on the
proaches [24] and [32]. For a robot systétwith D DOFs, guiding path7;_;(s) and q“*" is a random sample id;.
we decompose it intd/ parts: R = {Ry, ..., Ry}, with C; 7i-1(s)
as the configuration space for subsyst&nwith D; DOFs ur
and,Z?; D; = D. The system configuration spaceis (p.1)-dim vectorg = ( >, | which is one-to-one related
the joint configuration of allM robots:C = C; x ... X Cyy. O ) , L ,
Each subsystem can be regarded as a single robot in a mufith @. The resulting algorithm is similar to thé steps in

robot system [24] or one part of an articulated robot [32]5€C- !lI-B, but there are some differences:
The configuration of the system is= {q’, ...,q™}, where The first difference is with respect to contact query for

o’ € ¢, is the configuration for subsyste;. qn;; and q.. Only the contacts betweeR); an.d obstacles ol.%jl,l are

Qgoar are the initial and goal configurations respectively, "€€ded to be checked, because, is glrea'dy collision-free
As Algo. 1 shows, the planner computes a collision-fre@Nd guiding path constraint requirdg;_,’s configuration

path using incremental steps: in theth step it computes lying on 7;_; during the retraction step. _

a collision-free pathr; for a merged subsysteni; =  'he tangent constraint is also different. As(s) is

{Ry,...,R;}. Whenj = 1, 7, is computed folR, = R, with @ polygonal line inC-Space, its derivatives; 7;_1(s) is a

standard RRT algorithm. In the following steps, is com- staircase functiony?"“¥ changes with a constant ratio within

puted by a special RRT algorithm shown in Fig 3. Notice thaach path segment. Suppose such rate for segment containing
R; = {R;_1,R;} and7;_, is already a collision-free path Tj—1(s.) is v (refer to Fig 3(b)), Eq. 2 can be updated as:

Therefore we haveq = ( . We also define a

for R;_1, we use a greedy bias similar to [24], [32}2]-,1 ~ v veurs (A QP

will be constrained onr;_; and only R;’s configuration Jidq= (J7", J; )(dqcu'r'>

allows random sampling. As a result, the planning dimension dsv )

is reduced from)_]_, Dy to 1 + D;. Such special RRT = (JPTE JuTy (d CW)

can be viewed as planning; regardingR;_; as moving d

obstaclesr;_; is called theguiding pathfor Rj [32], which =dgc;

is parameterized ove0), 1], i.e. 7;_1 = 7;-1(s),s € [0,1].  Combined with Eq. 3, the tangent constraint Eq. 4 becomes
These methods can work well in many cases. However,

the guiding path bias is a greedy strategy and the overall K( dfm> =Kdg=0, (10)

algorithm may fail to compute a collision-free path. For dq

example, moving obstacl; _,’s trajectoryr;_; may make \yhere K — [KT,..., K%] is the contact matrixin decom-
a very narrow passage fdt; or block it. In order to handle posed case, ank; = (n7J?""v, nT Jeur)
’ T ) () .

this problem, we can usgerturbation[32] or decomposition * her retraction steps are similar to Sec. I1I-B: we also

adjustmentpresented in Sec. VI-A. _ _ a1(sy — se)

B. Retraction-Step define a desired contral qgesire = "¢ ] and the
aa(qr — qc)

As Fig. 3 shows, the retraction for a decompositioroptimal control will bed g* = (I—KTK)dqdesm. Finally,
planner is similar to that for RRT planner, except that wehe retraction result on the tangent spacéis= q. +dq~,
must consider the guiding path constraint. Suppose we aa@d we pullback it ontd”; and getq;. q;'s projection on



guiding path 7,

bt}‘

////er
T

_

(a) Voronoi diagram

Fig. 4. (&) shows the Voronoi diagram. The black nodes are Ré€Tnodes
and the red lines are edges between nodes. Imagine the vatiaigoam is
deformable and mark holes in places where obstacles are taabedb(the
red points). Then enlarge the hole to the shape of obstadelaform the
diagram, we obtain (b).

(a) retraction for decomposition-based planner

(Sn ! qn)
S

(Sd qu) (SC ’qc) (Srvqr)

<« segment contains S, ———————>

(b) retraction for decomposition-based planner: a 2-link example

Such exploring property assumes no obstacles exist so that
exploring C,.. is equivalent to exploring-Space.
When the environment contains obstacles, ideally we hope

that RRT will still bias towards unexplored regionsdp,...
Fig. 3.  (a) shows retraction-based extension for decomiposplan-  However, during sampling generation and finding a tree node
ner: The horizontal plane represenfiy’s configuration spac€;. s-axis pegrest to the sample, the RRT algorithm simply ignores
represents the guiding path;_;, s is the path’'s parameterization. The . . .
whole configuration space #,1] x C;, and one of its configuration is the obstacles in the scene. Rather it takes the obstactes int
q = (s,q) = (15-1(s),q), whereq € C; is a projection of(s,q) onto  account during the extension step. As a result, if a tree node

C; ands represents a point;_1 (s) on guiding path. RRT-extension tries to q is selected for extension, there is high probability that th
connect a node on decomposed RRT treg q,, ) towards a random sample

(sr,qr). Due to self-collision or collision with obstacles, the emsion ~ VOronoi cellV(q) has alarge volume, bit(q) () Cyrcc may
stops af(sc, qc), a contact state. Then a retraction[iy 1] x C; creates a  still be small, especially in narrow passages. In other word

series of contact statgsy, qq) closer to(s, ar). (b) shows the retraction \han there are obstacles in the scene, RRT’s Voronoi bias
algorithm for a 2-link example in workspace. Here the red @mpink is

sampled randomly and the black (lower) link is constrained widigg path. ~ Still prefers unexplored’-Space but not unexploredy, ..,
thoughC-Space is now larger thafy, ..
Ceont is the new extraction samplgq. We still have to  Qur retraction strategy can improve the performance of
check whetheg is valid configurationg. should be within . RRT planner in an environment with obstacles. We first
Rj's joint limits; s; and s. must lie in the same segment gnalyze what is the ideal RRT-extension when obstacles
of guiding path (this can be viewed as extra joint limitsexist and then show that our retraction approach is a good
requirement for an extra ‘joint's). Any violation can be approximation of the ideal case. We start from the RRT-tree
resolved by the method introduced in Sec. IlI-B. and its associated Voronoi diagram(Fig. 4(a)). Next we try
to embedC-Obstacles into the Voronoi diagram. Imagining
the diagram is deformable (i.e. edges and cells) and we mark
The retraction step improves Algo. 1 with a new RRT-holes in places wher@-Obstacles are going to be placed (red
extension step for RTWITHGUIDINGPATH. The new RRT- points in Fig. 4(a)). Then we extend the holes to the shapes
extension is the same as the one in Sec. IlI-C except w# C-Obstacles. This will distort the diagram as shown in
replace the RRT-extension and retraction algorithms by theig. 4(b). Since we use an elastic deformation, the distorti
corresponding versions for the decomposition planner ifunction f is a topological transformation(or homeomor-
Sec. IV-B. We also discuss other improvements for deconphisn) [17]. After the distortion function has been applied,
position planner besides retraction in Sec. VI-A.2. the new cells of the partition and tree nodes will move
away fromC-Obstacles and tree edges will become curved.
However, homeomorphism ensures that the curved tree edges
In this section we analyze the behavior of the retractionwith stay within the free space (Fig. 4(b)) and enter/lednee t
based RRT planner based on Voronoi diagram distortion. same cells by the same facets. These curved edges are the
It is well known that the behavior of RRT algorithmsideal RRT-extension in the presence of obstacles, and the
can be analyzed using Voronoi diagrams [15]. As showdifference between basic extension is that tree nodes must
in Fig. 4(a), given a tree built by the RRT algorithms, webe connected by curved interpolation, especially for those
consider the Voronoi diagram of all the tree nodes in@he edges in high-distortion regions, like narrow passagesséh
Space. In the RRT-extension step, in order to find the nearestrved cells are no longer strict Voronoi cells, in fact tizeg
node for a random samplg, is equivalent to find a tree closely related to theandmark Voronoi Complej6], which
node g whose associated Voronoi ceélf(q) containsq,. is the natural extension of the geometric Voronoi diagram to
Therefore the probability ofy to be selected for extension the case of a graph with the shortest-path metric.
is proportional to the volume o/ (q). As a result, RRT Next we show that the retraction-step approximates the
planners have an implicit bias towards unexplored regiongleal extension. First, the retraction step is executednwhe

C. Retraction-Based Decomposition Planner

V. ANALYSIS



RRT-extension is truncated and we add more samples nearirst we replace the Euclidean metric by a semi-geodesic
the contact space. As regions n€aObstacles always have metric. Euclidean distance between two samgdesq;) and
high distortion (Fig. 4(b)), the retraction step uses tatien (s, q2) is ||7(s1) — 7(s2)||3 + ||a1 — q=||3. However this
as a heuristic to detect a high-distortion region. Secqndlynetric does not bias enough for guiding path, e.g. when
retraction tries to find a node in free space nearest to randaenguiding pathr looks like a loop inC-Space, the two
sample by searching along contact space. Ideal extensiendpoints have small Euclidean distance, but the guiding
does similar thing: for cells neaf-Obstacles (the shaded path implies they should be very far away. Instead we use
cells in Fig. 4(b)), tree nodes will move to some place neahe semi-geodesic distan(:ﬁi2 7' (s)ds)?+|lq1 —qz||3. This
C-Obstacles that is nearest to their original position. €her metric considers the guiding path constraint and can measur
fore, retraction-based extension implicitly uses the ¢egh distance better.
Voronoi bias and can help RRT planner to perform better in Decomposition planner is greedy, therefore it is possible
narrow passages. that the guiding path constraint will make it hard to compute
a collision-free path after adding new subsystem of robot.
For example, ifr;_; is not suitable,[0,1] x C; may not

In this section, we present results of our retractioneontain a collision-free path. Our solution is automaticed-
based planner on articulated robots. We first discuss soroeganize the overall decomposition. We record the maximum
implementation issues. Then we highlight the performancand minimums values of current RRT-tree’s nodes, whose
of our new planner on a set of benchmarks with narroveonfiguration is of the forn{s, q). If the two values do not
passages. We show that for the basic RRT planner and tbeme close toward each other for a long time, we guess
decomposition planner, the retraction algorithm can inapro guiding pathr;_; is not good. Then we abanden_; and
their efficiency obviously. All the timings reported hereree merge R; and R;_; into one system and execute RRT
taken on a laptop with 2.8GHz CPU and 2GB memory. again in configuration spadé, 1] x C;_ x C; with 7;_, as
guiding path. In the worst case, the decomposition planner
will degrade into a basic RRT planner.

VI. IMPLEMENTATION AND RESULTS

A. Implementation

1) Retraction Algorithm: We use PQP [14] [31] for
collision detection and contact query. Based on the thré® Results
types of contacts (vertex-vertex, vertex-face and edgeed We test our retraction-based algorithm on a set of bench-
PQP reported, we compute the contact position and contantarks. In our experiment, we run every benchmaiktimes
normal for each contact, which is used in the retraction stepith different random seed and compute the average running
in Sec. llI-B and Sec. IV-B. Besides reporting contact wititime. We use two criteria to compare the performance be-
the obstacles, we also check for any self-collision in théwveen planners with and without retraction: 1) planninggim
articulated model. However, we pre-filter these contacts t8) ND-ratio, which is the ratio of number of non-degraded
remove some of the self-contacts. For example, for a hum@&RT-extensions (i.e. not the no-progress extension) to the
shape robot we will not report the self-contact between leftumber of all RRT-extensions. We prefer a planner with
hand and left arm, which are links adjacent to each othdopwer planning time and higher ND-ratio, which means more
Thus we manually decompose robot into several parts, afRT-extensions will contribute to the free-space explprin
filter the self-contacts within the same parts. This styategand fewer computational capability is wasted on unsucaessf
can improve algorithm’s robustness. attemps. ND-ratio is a rough measurement for performance,

Our approach works on triangle soup models, which mathough faster algorithms may have lower ND-ratio because
not be a smooth manifold. Thug; in Eq. 8 may be in- they can find a path with only a few RRT-extensions.
colliding due to surface noise. This can also be caused byIn our experiment, there arg& types of planners: Whole
concave geometry of-Obstacle aftq.. This will make the body planner is the basic RRT planner without decomposi-
projection operation (step 3, to gqt;) difficult. Moreover, tion technique, which is discussed in Sec. lll. Decompositi
our motion planner tries to connect each retraction sampfgdanner is discussed in Sec. IV. Designed+Decomposition
qq to the RRT-tree, but the manifold noise or local convexplanner is a special decomposition planner: the trajectory
geometry of(C-Obstacle atqy will make connecting two of some of its DOFs (e.g. lower body for human robot) is
nearby contact samples by linear interpolation, a part 6f-RR predesigned and planner aims at computing the trajectory fo
extension, rather difficult. Our solution is to relax thedgant other DOFs with the predetermined path as dynamic obsta-
constraints in Eq. 3 a little, i.e. change it doc; - n; = ¢;, cles. This special planner is especially useful for compute
wheree; is a small positive real number. As a result, theanimation, where animator can design the trajectory foresom
optimal control in Eq. 7 will bedq* = Kfe + oI — parts of a human-like articulated model and use planner to
K'K)(q, — q.). If this relaxation still does not work, we compute trajectory for remain parts. For each type of planne
use thevertex enhancemeff] method to generate additional we comparet types of variations: RRT, RRT with retraction
samples around. or qq. (RRT-R), BIRRT, BIiRRT with retraction (BiRRT-R).

2) Decomposition Planner:Here we introduce some In the firstbridge benchmark (Fig. 5) a hyper-redundant
methods other than retraction that are used by our implemerebot (HRR) tries to go through a hole and brackets of bridge.
tation to improve the efficiency of decomposition planner. We only test our retraction-based basic RRT planner here.



[ [ Bridge [ Picking [ Placement] Bending |

#obstacles 1 4 5 7
#DOF 40 41 (27) | 41 (27) 41
#polygons| 31718 7967 52810 372609
TABLE |

GEOMETRIC COMPLEXITY OF OUR BENCHMARKY* ARE FOR
PREDESIGNEB*DECOMPOSITION PLANNER.

Fig. 5. Bridge: 40-DOF HRR robot tries to go through the hald hrackets Whole body | RRT | RRT-R | BIRRT | BIRRT-R

of bridge. Retraction algorithm’s maximum speedup is 4 times. time (sec.) | 30.515] 8.031 | 25.109 | 10.140
— — - — - ND ratio (%) | 54.55 51.82 42.61 49.74
i . LiLi TABLE II

PERFORMANCE FOR BRIDGE BENCHMARK

Whole body RRT | RRT-R | BIRRT | BIRRT-R
4 ’ = *’ time (sec.) 33.24 | 0.417 2.069 0.339
6. Picki : Obi t 41 DOE h ‘ h - bot stands ND ratio (%) 38.65| 56.71 30.69 67.53
ig. 6. Picking Object: 41- uman-shape robot stands dppéaces — - -
. : s . - Decomposition RRT | RRT-R | BIRRT | BIiRRT-R
bject on the table. Retract Igorith dugois . :
object on the table. Retraction algorithm’s maximum speedDismes fime (sec) 1376 2188 T 0974 0284
ND ratio (%) 66.17 | 91.55 | 66.48 86.27
Designed+Decomposition RRT | RRT-R | BiRRT | BiRRT-R
time (sec.) 2.969 | 2.128 1.583 1.195
. ] . ] . ] ND ratio (%) 80.95| 93.02 | 87.20 91.03
% S iz, p AT/ TABLE Il
Fig. 7. Placing Object: 41-DOF human-shape robot picks thek and PERFORMANCE FOR PICKING OBJECT BENCHMARK
puts it on the shelf. Retraction algorithm’s maximum speedug témes - -
- ’ } Whole body RRT | RRT-R | BIRRT | BIiRRT-R
and can succeed when non-retraction planner fails. fime (sec) FAIL 5231 4320 5497
ND ratio (%) <10 | 31.23 | 22.15 4450
Decomposition RRT | RRT-R | BiRRT | BIRRT-R
time (sec.) FAIL 35.563 2.514 3.126
ND ratio (%) <10 | 6858 | 46.12 55.55
Designed+Decomposition RRT | RRT-R | BiRRT | BIRRT-R
time (sec.) 28.26 | 16.05 9.730 2.402
Fig. 8. Bending: 41-DOF human-shape robot bends and stetchput ND ratio (%) 71.00 | 81.16 68.01 78.57
the tool inside the car. Retraction algorithm’s maximum sppddL2 times TABLE IV

and can succeed when non-retraction planner fails.
PERFORMANCE FOR PLACING OBJECT BENCHMARK

In other 3 benchmarks, a humanoid robot tries to execute

. . . Decomposition| RRT | RRT-R | BiRRT | BiRRT-R
some tasks in constrained environments. We compare all time (sec) | FAIL | 7119 | 17.03 | 9.765
3 types of planners for the first two benchmari@bject ND ratio (%) | <10 | 36.47 | 1641 | 28.77
Picking (Fig. 6) andObject Placing(Fig. 7), because the TABLE V
constrained environments make it possible for planner to PERFORMANCE FOR BENDING BENCHMARK

find a reasonable trajectory for lower body. For 8ending o4y planner than for decomposition-based planner, for
(Fig. 8) benchmark, complete planning can not find & goORRT planner than for Bi-RRT planner. It is reasonable:

path for lower body, so we only test decomposition planneg i decomposition and RRT-connect algorithms are special
on it. The complexities of environments are shown in Table 'techniques designed to improve RRT planner's efficiency.
All the four benchmarks have narrow passagesbiiige  They already add some extra samples due to their own
hole and brackets of bridge make narrow passageSPIeCt  gpecial biases to help robot go through narrow passages.
Pickinggrate, ta_ble and cell|ng are main narrow passages f‘Rﬁany of these extra samples may also be the retraction
arm and head; i©bject Placing grate, lamp and bOOkSh?” samples created by our retraction-based algorithms. In one
cause narrow passages for armsending car and the chair o4 RRT-connect or decomposition techniques have al-
in car make environment challenging. ready provided part of retraction algorithm’s benefit, so ou
_The planning results of all the benchmarks are shown iphethod's benefit is not so obvious when combining with
Figs. 5, 6, 7 and 8. The performance results are summarizgéem, However, even for these cases, our new planner can
in Tables I, Il, IV and V. According to the tables, our retra  sjl| show an acceleration about 2-5 times. For RRT or whole

tion algorithm can significantly improve the performance Ofoody planner, the acceleration ratio is about 5-80 times.
RRT planners in almost all cases with narrow passages. The

ND-ratio of retraction-based planners are also higherctvhi VII. LIMITATIONS

means fewer degraded RRT-extension and makes planningDur method has a few limitations. First, our method

more efficient. behaves well when obstacles and links of articulated models
From the result we can find that our retraction-basedre locally convex near the contact points. If local convex

algorithm usually provide much larger speedup for whol@roperty holds, moving the links on contact points’ tangent



space will not create new contacts and collisions becausg]
there always exists a local separating plane between two non
colliding convex shapes. However, if locally convex prdper 8]
does not hold,qg; can have collision which is difficult to
resolve.

Secondly, the retraction algorithm needs to compute thégl
normals at the contacts, which is sensitive to the surface’s
quality. As a result, the performance of the retraction algd®l
rithm may be sensitive to the smoothness of the surface.

Another disadvantage is that we try to keep all the contactsi]
on their workspace tangent planes simultaneously. However
this is not always possible, e.g. when contact makixn 15
Eq. 4 or Eq. 10 is over-determined or the null-spacekof
is not within joint limits.

Finally, the optimization algorithm used for retraction;3
computation may be trapped in local minima. Compared to
the rigid body case [31]¢-Space of an articulated model 14]
can have much higher dimension, and so the local minima
problem is more serious. Moreover, the Euclidean metric
used by our optimization does not consider obstacles, whi¢H!
also adds to the difficulty of dealing with local minima.  [1¢

VIIl. CONCLUSIONSAND FUTURE WORK

In this paper, we present an optimization-based retractiqmy;
algorithm for articulated models to improve the performanc(18]
of RRT and decomposition planners. Our algorithm retractﬁg]
randomly generated-Obstacle samples so that they can be
more likely to be connected to the RRT-tree. We apply our
algorithm for articulated models with high DOFs for chal-[ZO]
lenging planning scenarios. The experimental results show
that our algorithm can efficiently explore narrow passages
with significant speedups. (21]

There are many avenues for future work. We are interestggb;
in analyzing our retraction-based planners using differen
distance metrics. We are also interested in udiagdmark
Voronoi Complexo design new PRM or RRT based planners
and analyze their performances for narrow passages. [24]
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