
Adaptive Dynamics of Articulated Bodies: Implementation Details

Stephane Redon∗ Nico Galoppo† Ming C. Lin‡

Department of Computer Science
University of North Carolina at Chapel Hill

Figure 1: Adaptive dynamics of articulated characters. In this complex scene, 200 human characters, represented by 17,800 rigid bodies
and 19,000 degrees of freedom, are suddenly pushed away from the camera due to applied forces. Our adaptive dynamics algorithm allows an
animator to progressively reduce the number of simulated joints in the characters as their distance to the camera increases, while automatically
determining which joints should be animated to best approximate the characters motion. Depending on the total amount of simplification
specified by the animator, a potentially significant speed-up can be achieved over typical linear-time forward dynamics algorithms.

1 Introduction

We provide some implementation details related to the paper
“Adaptive Dynamics of Articulated Bodies” [Redon et al. 2005].
Thanks to the recursive nature of the DCA [Featherstone 1999a;
Featherstone 1999b], upon which our algorithm is built, the
code is highly modular and an object-oriented language is highly
appropriate. We have implemented the algorithm in C++.

Modularity: Two fundamental classes of the dynamics library
are cArticulatedBody and cJoint. An articulated body is
recursively defined as a pair of articulated bodies connected by
a joint, and thus cArticulatedBody contains pointers to two
children articulated bodies and a cJoint object. The class cJoint
is actually a virtual base class from which specialized joint classes
are derived (e.g. cRevoluteJointZAxis to implement a 1-dof
rotational around a local z axis). This code specialization allows us
to optimize the code based upon the type of joint and the known
dimension of the motion subspace (e.g. using loop unrolling).

Variables mappings: When two articulated bodies A and B
are connected to form a new articulated body C, their handles
are renamed to simplify the various dynamics expressions. In
order to ease the implementation as well, a cArticulatedBody
object stores pointers which emulate the variables renaming. For
example, if HA

6 in A becomes HA
2 in C, the variable b2A in C is a

pointer to b[6] in A, which contains the bias acceleration bA
6 of

handle HA
6 . The renaming pointers are assigned only once, when a

new articulated body is created from two others.

Caching: Depending on the amount of memory available to the
dynamics library, many quantities that are used in more than one
function can be cached (e.g. W and γ).

2 Coordinates transformations

All dynamics quantities are expressed in the reference frame of
their respective handle, and the matrices and tensors can thus have
several reference frames associated to them. For example, ΦA

12 is
applied to a force expressed in the reference frame of handle HA

2

∗Stephane Redon is now at INRIA. E-mail: stephane.redon@inria.fr.
† E-mail: nico@cs.unc.edu. ‡ E-mail: lin@cs.unc.edu

to obtain an acceleration expressed in the reference frame of han-
dle HA

1 . This requires us to transform some quantities before using
them. For example, ΦA

2 and ΦB
1 have to be in the same pair of bases

before adding them and compute V = (ΦA
2 +ΦB

1 )−1. A hierarchi-
cal state representation is used to compute and store the necessary
coordinates transformation matrices [Redon and Lin 2005]. The
spatial transformation rules are given in [Featherstone 1999a], and
can be highly optimized for each type of joint, thanks to the code
specialization allowed by the joint class hierarchy.

3 Linear Coefficients Tensors
We have introduced rank-three and rank-four linear coefficients ten-
sors to obtain the values of the linear dynamics coefficients in con-
stant time for the nodes in the passive region [Redon et al. 2005].
For example, the composite bias acceleration bC

1 of a passive node
C is (bC

1 )a = (BC
1 )abc(vC

1 )b(vC
1 )c, where vC

1 is the composite veloc-
ity of HC

1 . In order to efficiently perform this evaluation, it is worth
noticing that this amounts to evaluating six quadratic polynomials
per handle. Computing and storing these polynomials instead of the
tensors BC

1 allows for a significant speedup in the computation of
the linear dynamics coefficients. Similarly, the rank-four tensor EC

can be replaced by one quartic in the components of vC to obtain
ηC. The various polynomial operations can easily be implemented
using a combination of formal calculus software and IDE macros.

References

FEATHERSTONE, R. 1999. A divide-and-conquer articulated body algorithm for par-
allel o(log(n)) calculation of rigid body dynamics. part 1: Basic algorithm. Inter-
national Journal of Robotics Research 18(9):867-875.

FEATHERSTONE, R. 1999. A divide-and-conquer articulated body algorithm for paral-
lel o(log(n)) calculation of rigid body dynamics. part 2: Trees, loops, and accuracy.
International Journal of Robotics Research 18(9):876-892.

REDON, S., AND LIN, M. C. 2005. An efficient, error-bounded approximation al-
gorithm for simulating quasi-statics of complex linkages. In Proceedings of ACM
Symposium on Solid and Physical Modeling.

REDON, S., GALOPPO, N., AND LIN, M. C. 2005. Adaptive dynamics of articulated
bodies. In ACM Transactions on Graphics (SIGGRAPH 2005 Proceedings).


