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Abstract
Large, 3D ice formations such as icicles exhibit a high degree of geometricand optical complexity. Modeling
these features by hand can be a daunting task, so we present a novel physically-based algorithm for simulating
this phenomenon. Solidification is usually posed as a so-called ‘Stefan problem’, but the problem in its classic form
is inappropriate for simulating the ice typically found in a winter scene. We insteaduse the ‘thin-film’ variant of
the Stefan problem to derive velocity equations for a level set simulation. However, due to the scales involved in
the problem, even an adaptive grid level set solver is still insufficient to track the tip of an icicle. Therefore, we
derive an analytical solution for the icicle tip and use it to correct the level setsimulation. The results appear to
be in agreement with experimental data. We also present a physically-based technique for modeling ripples along
the ice surface that alleviates the need to explicitly track small-scale geometry.To our knowledge, our approach
is the most complete model available, and produces complex visual phenomena that no previous method has been
able to capture.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]:

1. Introduction

The dense optical and geometric complexity of ice adds ap-
peal and authenticity to any winter scene. Like wind and
fire, ice is considered elemental, so it is useful as a dramatic
tool in visual effects. Large scale ice formations have ap-
peared in recent films such asThe IncrediblesandThe Lion,
the Witch and the Wardrobe. In the former, the icicles were
modelled as smooth, stylized cones, and in the latter, they
had to be hand-molded from plaster and clay. In the absence
of a computational model for solidification, modeling realis-
tic ice formations by hand can be a daunting task. This task
becomes even more demanding if an animation of the ice
forming is required, as it is unclear what the dynamics of the
ice surface should be.

Recent research efforts have found much success in sim-
ulating fluids (see e.g. [SRF05] and [FOK05] for recent re-
sults), but these algorithms are designed to capture features
such as vorticity and splashing. Freezing is instead charac-
terized by sharp icicle tips, and the optical effects caused
by surface rippling. The underlying pattern formation mech-
anisms are different, so new algorithms are needed. While
some recent work has addressed the problem of ice forma-
tion [KL03,KHL04], it dealt with small-scale, essentially 2D

formations such as frost on surfaces or snowflakes. The tech-
niques described therein assume that the ice crystal is sur-
rounded by a large bath of water, and while an argument can
be made that this is the case in 2D, it is clearly not the case
in 3D. This makes their extension to the complex 3D cases
we present here difficult.

Simulating large scale ice formation is a challenging task
due to the wide range of scales involved. An interesting ice
formation is on the scale of roughly 1 meter, but the tip of
an icicle is roughly 2 millimeters in radius, and a thin water
film coats the ice that is on the order of tenths of a millime-
ter in thickness. Surface tension forces in this thin film drive
the formation of sharp icicle tips, and also cause the forma-
tion of ripples along the icicle surface. Therefore, in order to
convincingly simulate the formation of large scale features,
features that span four orders of magnitude must be accu-
rately resolved. In this paper, we present a method that cap-
tures these various multi-scale phenomena in a single unified
simulation.

Phase transition problems are usually stated as aStefan
Problem. Usually this problem examines how ice forms in
an infinite supply of water. We are instead interested in the
case where the water supply is severely limited. Therefore,
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we present a ‘thin-film’ version of the Stefan problem and
design a novel method for solving this problem efficiently.

Features on the ice surface frequently merge, so we have
elected to use level set methods for the overall simula-
tion [OF03,Set99]. However, even adaptive mesh techniques
such as the octree level set solver in [LGF04] cannot pro-
vide the resolution needed to resolve surface tension forces
that are four orders of magnitude smaller than the overall
domain, so we describe methods of tracking small-scale fea-
tures separately. We derive an analytical solution for the dy-
namics of the icicle tip, as well as a curvature-dependant
evolution equation for the ice far from the tip. In order to
avoid explicitly tracking a large amount of ripple geometry,
we modify an analytical model from physics that poses sur-
face ripples as a Fourier mode along the ice surface. We use
this method to defer explicit instantiation of the ripple ge-
ometry to render time.

Our contributions are as follows:

• A level set approach to the thin-film Stefan problem;
• An analytical solution for the tip of an icicle that appears

to be in agreement with experimental data;
• A non-linear, curvature-driven evolution equation for the

ice front far from the icicle tip;
• A physically-based method for simulating surface ripples

that avoids the need to track small scale geometry in the
simulation;

• A unified simulation framework for modeling complex ice
dynamics.

We verify the results of our simulation numerically with
experimental data and visually with photographs. We also
demonstrate our algorithm on several scenarios, including
natural 3D icicle formation, an ice sculpture, and a freezing
fountain scene. Our approach is quite efficient, with each
step taking an average of 2.5 to 12 seconds and the total
simulation running times ranging between 5 and 30 minutes.

2. Previous Work

Various forms of phase transition have attracted recent atten-
tion in computer graphics. Carlson et al. [CMIT02] and Wei
et al. [WLK03] respectively presented MAC and Lattice-
Boltzmann based methods for simulating melting. Subse-
quently, Rasmussen et al. [REN∗04] proposed an IMEX
scheme for the viscous forcing terms, and Losasso et al.
[LIGF05] described a method of melting Lagrangian solids
into Eulerian liquids.

However, solidification has not been as well examined. To
the best of our knowledge, the only work that bears some re-
semblence to ours is [KG93]. They described a random-walk
model of icicle growth, where water droplets walk along an
ice surface and freeze with a certain probability. However,
their approach does not naturally handle the formation of
more than one icicle. More seriously, the notion that icicles

form as the aggregate of discrete droplets is not empirically
supported. Kim et al. [KL03, KHL04] presented ice forma-
tion algorithms for relatively small-scale 2D growth on 3D
objects. As described earlier, their approaches cannot gener-
ate the structures in this paper.

In physics and glaciology, there exists some work on the
problem of thin-film ice growth. Several analytical models
exist for icicle formation, such as [MMN∗94,Mak88,SL94],
but these models are concerned with accurately capturing the
ratio of an icicle’s length to its radius. They are not directly
applicable to visual simulation, as they would merely gener-
ate simple cones and cannot capture surface rippling effects.
Thin film ice formation is also a topic of interest in mechan-
ical engineering, as ice forming on the wing of an aircraft is
a hazardous scenario. The Messinger model [Mes53] is the
standard method of determining when ice will form, but is
an energy balance model that is also not directly applicable
to visual simulation. Myers and Hammond [MH99] recasted
the problem as a thin film Stefan problem, but only solved
the 1D case.

Until very recently, the physics of ripple formation on
crystal surfaces was a poorly understood phenomenon. How-
ever, Ogawa and Furukawa [OF02] recently proposed a
model of ripple formation which was subsequently refined
by Ueno in a pair of articles [Uen03, Uen04]. The model
from [OF02] only applies to a cylinder, and Ueno’s model
was derived for an inclined plane. We will later modify
Ueno’s model for our simulation.

3. The Stefan Problem

3.1. Background

In math and physics, solidification is usually posed as a
Stefan problem. First posed by Josef Stefan as a model
of ocean ice forming in arctic regions, the Stefan problem
has since found applications in fields ranging from geology
to metallurgy. The richly non-linear behavior of the prob-
lem has also attracted considerable interest in mathemat-
ics [Hil87, Mei92]. An excellent historical overview of the
Stefan problem is available in [Wet01].

There are only a handful of known closed form solutions
to the Stefan problem, and these only apply to simple ge-
ometries. Stefan originally solved the planar case, and sub-
sequently the case of a sphere [Fra49] and a parabola [Iva47]
were derived. These cases are often referred to eponymously
as the “Frank sphere” and “Ivantsov parabola” solutions. We
will later base some of our thin film equations on these solu-
tions.

Due to its ability to handle geometry with rapidly chang-
ing topology, level set methods have found recent success
in solving the Stefan problem numerically. The method was
first applied in [SS92]. More recently, second [GFCO03] and
fourth order [GF05] approaches were proposed. All of this
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work dealt with the classical Stefan problem. We are instead
interested in applying level set methods to the thin film case,
because it is more appropriate for modeling ice formation in
natural scenes. While our work may at first appear related to
that of [CMK∗01], the ‘thin-film’ referred to in this case is
2D epitaxial growth on a semiconductor wafer, not a thin-
film water supply.

3.2. The Classic Stefan Problem

The Stefan problem is composed of two simple equations.
Assume we have a heat fieldT defined continuously over
some computational domain, and an initial ice/water inter-
faceΓ. The heat field evolves according to the heat equation

∂T
∂t

= D∇2T, (1)

whereD denotes a diffusion constant. The ice/water inter-
face then evolves in the normal direction according to

∂Γ
∂t

·n = D
∂T
∂n

, (2)

wheren denotes the normal direction. Fluid velocity and the
coefficient of expansion of ice are assumed to be negligi-
ble. Many different flavors of the Stefan problem exist that
impose various boundary conditions on the heat field and in-
terface. We select theone-sidedStefan problem as the most
appropriate for our case. In this case the ice/water interface
is assumed to be the freezing temperature of water,Tf , and
the temperature of the fluid infinitely far from the interface
is set to some undercooled temperatureTu, whereTu < Tf .
Both of these assumptions are necessary if the crystal is to
grow. If the temperature at the crystal surface were greater
thanTf , phase transition would not occur, and if the temper-
ature of the fluid were not lower thanTf , then by Eqn.2, no
growth would occur.

We are dealing with an overall timescale on the order of
hours, so we can assume that the heat field is essentially in
equilibrium. Eqn.1 then simplifies to the Laplace equation

∇2T = 0. (3)

This quasi-steady state approximation and the boundary con-
ditions just described are common to all the existing mod-
els from glaciology [MMN∗94, Mak88, SL94] and physics
[OF02,Uen03] as well.

3.3. The Thin Film Stefan Problem

Unlike the classic Stefan problem, we want to model the
situation where a thin film of water continuously coats the
outside of the ice. We assume that the crystal surface is at
freezing temperatureTf , but instead of specifying the under-
cooled temperatureTu at some infinitely far away boundary,
we specify it at a small offsetδ from the interface. More

formally, we specify this as

T(Γ+δ(Γ ·n)) = Tu. (4)

Using this modified boundary condition, we can derive thin-
film evolution equations that can be solved using level set
methods.

The simplest case is an evolving planar interface. In 1D,
Eqn.4 simplifies toΓ+δ = Tu. The Laplace equation is eas-
ily integrated in this case, and by inserting the result into
Eqn.2, we obtain a constant velocity for the planar case:

dΓ
dt

= D
Tu−Tf

δ
. (5)

This planar solution matches the one obtained in [Uen03].

The cylindrical solution can be obtained in a manner sim-
ilar to the classical solution described in [Hil87]. For the
cylindrical case, we must instead solve the polar Laplace
equation,

D
∂2T
∂r2 +

D
r

∂T
∂r

= 0, (6)

wherer is the radial coordinate. We assume the crystal is
growing in the positiver direction, and define the current
interface position asr ′ within this coordinate system. The
exact method we use to transformΓ to r ′ will be discussed
in Section5.2. By applying the two boundary conditions to
the polar Laplace, we obtain

T(r ′) = DTf +D
Tu−Tf

log
(

r′+δ
r′

) (logr − logr ′). (7)

We want a velocity equation atr ′, so we take the derivative
of Eqn.7, solve forr = r ′, and substitute the result into Eqn.
2 to obtain:

∂Γ
∂t

= D
∂T(r ′)

∂r
= D

Tu−Tf

r ′ log
(

r′+δ
r′

) . (8)

We can obtain a similar solution for the negative curvature
case. This corresponds to the case where the ice freezes ra-
dially inwards to fill in a cylindrical hole. Following steps
similar to those above, we obtain

∂Γ
∂t

= −D
Tu−Tf

r ′ log
(

r′−δ
r′

) . (9)

Eqns.8and9can be consolidated into a single velocity equa-
tion,

∂Γ
∂t

= D
Tu−Tf

|r ′| log
(

|r′|+δ
|r′|

) . (10)

This is the equation that the level set solver solves. We note
this equation implicitly includes Eqn.5 as well. The planar
case corresponds to the case of a cylinder of infinite radius,
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and in the limit

lim
r′→∞

D
Tu−Tf

|r ′| log
(

|r′|+δ
|r′|

) = D
Tu−Tf

δ
, (11)

the planar velocity equation is retrieved. Therefore, Eqn.
10 describes the interface velocity of cylinder with positive
and negative curvature, as well as a plane. We have not en-
countered this equation elsewhere in the literature, so to our
knowledge, it is novel.

On a high level, Eqn.10 induces faster growth in regions
of high curvature. While it would be simpler to only use
the planar solution, we found that this produces unnaturally
sharp corners in the results. The curvature-dependant term
smooths away these corners.

3.4. The Thin Film Ivantsov Parabola

In this section we will derive a solution to the thin-film Ste-
fan problem for parabolic geometry. The paraboloid solution
drives icicle growth, so it is crucial that it be solved accu-
rately. From a visual simulation standpoint, correctly cap-
turing the velocity of an icicle tip is important because it
determines the overall shape of the icicle. If the velocity is
too slow, we will get unconvincingly stubby icicles, and if it
is too fast, we will get equally unconvincing needles.

A brute force solution would directly simulate the water
flow along the surface of the icicle, and correctly model the
surface tension forces that give rise to pendant drops, which
in turn form icicle tips. However, the water layer along the
icicle wall is 0.1 mm in thickness, so tracking this feature
inside a 1 meter3 cube would require at least a 100003 grid.
Even with an octree solver, this resolution is intractable.

Fortunately, there is a simple solution. The experimen-
tal measurements in [MMN∗94] indicate that across a wide
range environmental conditions, the radius of the tip of an
icicle remains fixed at approximately 2.5 mm. By inserting
this experimental value into an analytical solution for the
growing icicle tip, we can correct the signed distance func-
tion at every timestep. We are able to solve for the dynamics
of the icicle tip independently because the physics only de-
pend on threelocal factors: the curvature, the ice and air
temperatures, and the radius of curvature of the icicle tip.
We have found that by using this method, we can obtain sat-
isfactory results on a much coarser 2563 grid. In practice, we
actually used an octree with a maximum depth of 8, corre-
sponding to at most a 2563 grid.

In crystal growth, the Ivantsov parabola solution is often
used to model the growing tip of a dendrite. We conjecture
that icicles are the thin film analogs of classic Stefan problem
dendrites. There are several different methods of obtaining
the Ivantsov parabola solution, but we model our thin-film
derivation after the derivation given in [Sai96]. Crucial steps,
such as Eqn.14, and the dual definition of the Peclet number,
mirror steps from that derivation. Assume that a parabolic
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Figure 1: 2D slice of parabolic coordinate system: Red
lines are parabolas of constantξ, and blue lines are constant
η. Note how the distance betwen adjacent lines increases far
from the tip.

crystal is growing in thezdirection with a velocityV. In this
case thez direction corresponds to the direction that points
toward the ground. We define a moving framez′ = z−Vt
so that at timet, z′ = 0 always denotes the current position
of the parabola tip. We then define a parabolic coordinate
system

ξ = r −z′

η = r +z′

θ = arctan(x/y),

wherer =
√

x2 +y2 +z′2. Intuitively, ξ andη each define
a paraboloid in space, and their intersection forms a circle.
Theθ coordinate then defines a point on this circle. (See Fig.
1)

We represent the overall interface as a paraboloidη′,
which is defined as theη that contains the current tipz′. The
Laplace equation in parabolic coordinates becomes

∂
∂η

(

η ∂T
∂η

)

+
1
lD

(

η ∂T
∂η

)

= 0, (12)

and Eqn.2 simplifies to

∂T
∂η

=
1
lD

, (13)

where lD denotes the diffusion length. It appears that this
equation no longer describes a velocity, but it is implicit in
the lD term. The thin film boundary conditions can then be
stated asη′ = Tf andη′+δ = Tu. Due to the parabolic coor-
dinate system, the second boundary condition is only mean-
ingful near the tip. As shown in Fig.1, the normal distance
between two adjacent values ofη increases as the distance
from the tip increases. Therefore, far from the tip, the dis-
tance between the two will be much greater thanδ. Fortu-
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symbol definition value
Tf freezing temperature 0oC
Tu undercooled temperature −4.9oC
L latent heat of fusion 3.3×108 J/m3

D thermal diffusion constant 1.3×10−7 m2/s
Cp specific heat 4.2×106 J/(Km3)
h0 thickness of water layer 10−4 m
k wavenumber 600
n solid over liquid thermal

conductivities
3.92

ε initial ripple amplitude 1×10−4 m
σr ripple amplification rate 5.2×10−4 s−1

vp ripple translational velocity −6.1×10−7 m/s

Table 1: Symbols and values. Values are from [Uen03].

nately, since we are only interested in values near the tip,
far away inaccuracies are irrelevant. Using these boundary
conditions, the parabolic Laplace equation integrates to

T(η) =
Cp(Tu−Tf )

L






1−

R η
η′

e
−

η
lD

η dη
R η′+δ

η′

e
−

η
lD

η dη






. (14)

whereL is the latent heat, andCp is the specific heat. Insert-
ing this result into Eqn.13, we obtain

Cp(Tu−Tf )

L
=

η′

lD
e

η′
lD

Z η′+δ

η′

e−
η
lD

η
dη

=
η′

lD
e

η′
lD

(

Z ∞

η′

e−
η
lD

η
−

Z ∞

η′+δ

e−
η
lD

η

)

dη.

(15)

By applying exponential integral notationE1(P) =
R ∞

P
e−x

x dx and a change of variables using the Peclet

numberP = η′

lD
, this equation can be rewritten as

Cp(Tu−Tf )

L
= P

(

eP
)

(

E1(P)−E1

(

P+
δ
lD

))

. (16)

Velocity can be solved for by substituting the identityP =
η′V
2D , whereV is the tip velocity andD is the thermal dif-

fusitivity. Like the classic Ivantsov parabola solution, Eqn.
16 is difficult to integrate explicitly, so we solve it numeri-
cally. Similar to the method used in the classic case, we first
approximateE1(P) with its Puiseux series

E1(P) = γ+ lnP+
∞

∑
n=1

(−1)nPn

n!n
, (17)

whereγ is the Euler-Mascheroni constant, and then solve for
V using Newton iteration.

4. A Ripple Formation Model

The equations we have presented so far will produce sharp
icicle tips, and smooth features far from the tip. However,

Figure 2: Rendering stages. Left to right: 1. Matte shaded
level set results. 2. Ray traced level set results. Note the un-
natural smoothness of the surface. 3. Recorded arrival times.
Whiter regions denote later arrival times. Note how the time
increases near the tip. 4. Ray traced results obtained by in-
serting the arrival times into the Ueno model. Note the un-
natural uniformity of the ripples. 5. Final render using ve-
locity and amplitude perturbation.

other non-smooth features occur in ice formations. This is
most visible as ripples along the surface of an icicle. In this
section, we present a method of simulating these features.

Until recently, the formation of these features was poorly
understood. Pattern formation of this type is usually ex-
plained in terms of Mullins-Sekerka theory [MS64], but
Mullins-Sekerka theory predicts the formation of patterns at
many wavelengths, whereas experiments show that ice rip-
ples only form at a wavelength of roughly 1 cm. Recently,
[Uen03] showed that one of the elements of Mullins-Sekerka
theory, the Gibbs-Thomson effect, does not apply in the case
of ice ripple formation, and proposed an alternate model that
is in excellent agreement with experimental data.

The Ueno model can be stated in one dimension as

u(x, t) = εeσr t sin(k(x−vpt)), (18)

wherex andt are spatial and temporal coordinates,ε is the
amplitude of the initial ripple,k is a wavenumber,σr is an
amplification rate, andvp is a translational velocity. Intu-
itively, we can think of Eqn.18 as a sine wave being trans-
ported along the ice surface, which amplifies in time by a
factorσr and climbs up the length of the icicle with a veloc-
ity vp. The representation is attractive because it allows us
to track just a single ‘creation time’ scalar during the simu-
lation, and leave the instantiation of ripple geometry to the
renderer.

If we use Eqn.18 directly in our simulation, we will ob-
tain unnaturally symmetric ripples, as can been seen in the
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second to last image of Fig.2. This is because in the Ueno
model, the translational velocityvp is assumed to be con-
stant. A brute force method of introducing more visual vari-
ety would be to take the derivative of Eqn.18 and integrate
it at every grid point, at every timestep. This would impose
a small timestep restriction on the simulation, and since we
are dealing with timescales on the order of hours, we would
like to avoid such a restriction.

Instead, we observe that thevp variable can be interpreted
as the average translational velocity of the interface over
the lifetime of the ripple. Various environmental conditions
cause this average velocity to fluctuate over time, so we can
imitate this physical noise using numerical noise. We elect
to use an easily controlled Perlin noise function with a 1 cm
wavelength. At render time, each vertex does a lookup into
a 3D Perlin noise function and uses it to jittervp. The result
of this simple perturbation can be seen in the final image
of Figure 2. In addition to avoiding a timestep restriction,
this approach decouples the small scale detail almost entirely
from the level set simulation. When designing ice patterns,
the small scale ripple details can then be tweaked without
having to rerun the simulation.

5. A Level Set Solver

5.1. Background

We will now describe how to solve the equations from the
previous sections using level set methods [OF03, Set99].
Level set methods can simulate interfaces with rapidly
changing topology by embedding the interface as an iso-
surface in a higher-dimensional function, which is usually
a signed distance functionφ. The function is then evolved
according to the equation

∂φ
∂t

+v ·∇φ = 0, (19)

wherev is some velocity field. Because the ice interface of-
ten merges, we have decided to use level set methods in this
work. We specifically use the narrow band level set method
[AS95], where the narrow band is tracked using an unbal-
anced octree, much as in [LGF04]. We use fifth order HJ-
WENO for the spatial derivatives and second order TVD RK
for timestepping (see [OF03] for details). A hybrid particle
level set method [EFFM02] has recently been successful in
simulating the Navier-Stokes equations because it uses La-
grangian particles to re-introduce smeared out small scale
detail. In our case, we have captured the small scale detail
using alternate methods, so a basic level set solver suffices.

5.2. The Velocity Field

In order to evolve an existing ice interface, we must specify a
velocityv. At each grid point, we choose to approximate the
interface as locally cylindrical, and use Eqn.10 to compute
the velocity in the normal direction. In order to do this, we
first compute the maximum principal curvature at each grid
point by computing the Gaussian curvatureK and the mean

curvatureH. The maximum curvature is then the larger root
κ of the quadraticκ2−2Hκ +K = 0 (see [Set99,OF03] for
details). Thisκ describes the largest osculating cylinder at
that point, so we plug this value intor ′ from Eqn.10. The
resultant radial velocity is then dotted against the normal di-
rection, giving us the final velocity at that grid point.

Eqn.10is only defined along the interface, whereas we re-
quire velocities over the entire narrow band. Since curvature
is defined over the entire domain, we use it to compute val-
ues for Eqn.10everywhere. This approach does not seem to
distort the distance field much, so it works well in practice.

5.3. Inserting the Icicle Tips

In section3.4, we derived the velocity of a parabolic icicle
tip, with the goal of tracking these small scale paraboloids
separate from the level sets and using them to correct the
signed distance function. We now show how to perform this
correction. The equation for a translating paraboloid point-
ing in the negativezdirection is

z(x,y) =
x2

2R
+

y2

2R
−Vt, (20)

whereR is the radius of curvature,V is velocity, andt is time.
In this case we use the radius of curvature of the icicle tip,
which has been experimentally observed to be roughly 2.5
mm under a wide variety of conditions. We assume that the
paraboloid is circularly symmetric, so we can instead solve
the 2D case

z(x) =
x2

2R
−Vt. (21)

The squared distance from any point in space(px, pz) to any
point on this parabola is then defined as

S= (px−x)2 +

(

pz−

(

x2

2R
−Vt

))2

, (22)

whereS is the squared distance. If we want to then find the
minimum distance to the parabola, we must find the zeros of
the derivative ofS,

dS
dx

= −2(px−x)−
2
R

x(pz−Vt−
x2

2R
). (23)

We find the roots of this equation numerically. The second
derivative ofS is very flat around the roots of interest, mak-
ing Newton-Raphson a poor choice for a solver. Fortunately,
we can obtain fairly tight bounds on the location of the root,
making bisection method viable. Since a parabola is sym-
metric about they axis, we can solve for the value of the
root over the positivex domain (excludingx = 0) without
loss of generality. Over this half space, Eqn.23 can only
have one root, corresponding to the point of minimum dis-
tance. If the point (px, py) is outside the parabola, then the
root is guaranteed to be in the interval〈0, px]. If the point is
inside the parabola, the root is guaranteed to be in the inter-
val 〈0,

√

2R(py +Vt)], Using these bounds, we have found
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that bisection method only requires a handful of iterations to
converge.

With this method, we can correct the signed distance field
of the level set solver. At every timestep, given the current
position of a paraboloid, we compute the exact distance field
values for a 43 neighborhood around the tip and overwrite
the values in the level set distance field. Cases where the
tip runs into an obstacle such as the ground can be handled
by simply deleting the parabola and letting curvature-driven
growth take over.

5.4. Tracking the Ripples

The last component of the level set solver is a ripple tracking
method. In section4, we described the ripples as a translat-
ing sine wave. We couple the ripple formation equation, Eqn.
18, to the level set solver using the time variablet.

The variablet in Eqn.18represents the length of time that
a ripple has existed, not the overall time that the simulation
has been running. In order to obtain thist, we need to track
the creation time of each ripple. Since the icicle tips are the
fastest moving features in the simulation, whenever the icicle
tip solution is used to correct the signed distance function,
we set the creation time in those grid cells to the current
time. The initial ice front at the beginning of the simulation
is given a creation time oft = 0.

We encounter the same problem when tracking the cre-
ation times that we did with the velocities; they are only de-
fined along the interface. But, we need a method of ensuring
that as the interface moves, the creation time moves with it.
To accomplish this, we apply the method of fast extension
velocities described in [AS99]. Instead of extending a veloc-
ity off of the front, we extend the creation time. An example
of these tracked arrival times is shown in the middle image
of Figure2.

6. Rendering

We interface the level set solver with a renderer by perform-
ing marching cubes on the distance field, and sending the tri-
angles to 3Delight, a RenderMan implementation. The cre-
ation time information is interpolated per vertex and sent to
the renderer as well. A displacement shader then computes
Eqn.18, applies noise to the interface velocity, and generates
the ripple geometry on a per pixel basis.

Ice presents a challenging rendering scenerio because re-
fraction, reflection, and multiple scattering make up the bulk
of the visual detail. The reflection and refraction components
can be dealt with by using the two layer wetness model de-
scribed in [JLD99].

Accounting for the multiple scattering effects is more dif-
ficult. An obvious choice is to use the dipole approximation
from [JMLH01], but this model is not well suited to ice. The

model assumes that the scattering medium is fairly homo-
geneous, but in the case of ice, the medium varies contin-
uously from transparent at the surface to highly scattering
at the core. It appears that even the recent work of [DJ05]
cannot be applied, since it handles multiple discrete scat-
tering layers, but not a continuum. Additionally, the dipole
model approximates the surface as a semi-infinite plane, and
this assumption breaks down at the sharp icicle tips. Solv-
ing these issues rigorously is beyond the scope of this pa-
per. Instead, we will describe a method that provides reason-
able visual results. Near the root of the icicle, the medium is
sufficiently thick and the curvature sufficiently flat that the
dipole approximation gives visually plausible values. Near
the tips, the dipole approximation returns unnaturally dark
values. Fortunately, we know that thin features usually de-
note newly created ice, which is nearly transparent. So, in
addition to using the dipole approximation to render the ice,
we also use it as a blending factor between the multiple scat-
tering color and the purely refracted ray color.

7. Results and Validation

We have used our algorithm to simulate ice formation in sev-
eral scenes, and also validated portions of our model against
experimental data. The code was compiled using Intel Com-
piler 8, and the timings were obtained on a 3 GHz Pentium 4.
All simulations take place on an bounded, unbalanced octree
with maximum depth of 8, corresponding to a virtual 2563

grid.

In Figure5 we simulated ice forming on a fountain. The
fountain was left running during a cold day, and the over-
flowing water froze into ice. The simulation averaged 12 sec-
onds a timestep and completed in 30 minutes. In Figure7 we
simulated ice forming under a roof top. The simulation av-
eraged 2.5 seconds a timestep and completed in 5 minutes.

In order to demonstrate the flexibility of our model,
we simulated the ‘icicle star’ sculpture by internationally
renowned artist Andy Goldsworthy [Gol90] in Fig. 4. Mr.
Goldsworthy constructs sculptures from natural materials, in
this case icicles. The formation of the icicle star could not
occur naturally, because gravity forces a downwards water
flow. However, our model implicitly allows water to flow in
any direction by simply re-orienting the parabolic tips. For
an animation of our ‘zero-gravity’ icicle-star growing, please
see the supplementary video. The simulation averaged 5.1
seconds per timestep and was completed in 18 minutes.

We have not found Eqn.16 elsewhere in the literature,
so to test its validity we have compared it against experi-
mental data. There is a limited amount of data available on
the 3D ice growth, but [MMN∗94] provides experimental
data on icicle tip velocities under a range of undercoolings.
In order to make a comparison to their data, we must se-
lect appropriate values forη′ and δ. The η′ value can be
interpreted as the radius of curvature of the icicle tip. As
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Figure 3: Experimental validation: Our thin film model
passes through the center of the data set, while the classic
Ivantsov solution predicts much slower growth rates than
those measured.

stated earlier, experiments show that this value is 2.5 mm.
The value ofδ on the icicle surface is usually on the order
of 1×10−4 m, but this value represents the water thickness
along the icicle wall, not at the tip. At the tip, a pendant drop
forms that is roughly the same radius as the underlying crys-
tal. Therefore, we estimate the value ofδ at the tip to be 2.5
mm as well. Fig.7 shows how our predicted values com-
pare to experimental data. We compute tip velocities over a
variety of undercoolings, and compare our results to those
of the classic Ivantsov relation. As stipulated by Eqn.2, as
the undercooling increases, the growth rate must increase as
well. The classic solution predicts much slower growth and
consistently undershoots the data. This is to be expected, be-
cause in the classic case, the temperature gradient at the tip
has been ‘stretched’ by the infinitely far away boundary con-
dition. While this experimental data set appears to be quite
noisy, our solution appears to be in fair agreement, and we
have found that it generates visually convincing results as
well.

8. Summary and Future Work

We have presented an efficient physically based method for
simulating 3D ice formations that are typically found in win-
ter scenes. The model is, to our knowledge, the most com-
plete approach currently available.

The most natural direction for future work is the integra-
tion of our model with melting and combustion simulations,
creating a unified approach that can visually capture all three
common states of matter and all the phase transitions in-
between. This would also allow, for example, the droplets
from the icicle tips to be simulated. The effects of an explicit
flow simulation can be incorporated into the current ice sim-
ulation by allowing theδ and Tu variables to vary locally
according to the flow. However, correctly resolving all these
factors introduces some very challenging scale disparities in
both space and time.

As previously mentioned, from a rendering standpoint, we

know of no algorithm that can efficiently render the heav-
ily inhomogeneous scattering medium that ice represents, so
this also presents an interesting future work direction.

On the physics side, while Mullins-Sekerka theory pre-
dicts the formation of dendrites in an infinite bath, there is no
equivalent theory for the thin film case. Such a theory would
predict the locations of icicle initiation, allowing the simula-
tion to automatically place the parabolic tips. Lastly, due to
the similarly between the heat and mass transfer equations,
recent results [SBB∗05] also suggest that methods similar to
the ones we present here could simulate stalactite formation.
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Figure 4: Icicle Star: Inspired by an Andy
Goldsworthy sculpture [Gol90], we simulated
the growth of an icicle star. See for example
www.gac.culture.gov.uk/gacimages/Fullsize/16622A. jpg

for the original photograph. Goldsworthy is an artist who
constructs sculpture from natural materials, in this case
icicles. While this formation cannot occur in nature, our
user controls allow such a ‘zero gravity’ star to be grown.
The simulation completed in 18 minutes.
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Figure 5: A freezing fountain: Ice forms in a fountain one morning when the temperature dips below freezing. This simulation
completed in 30 minutes.

Figure 6: Ice forming on a roof: Icicles form from the snow melt running off down a roof. This simulation completed in 5
minutes.
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