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Abstract

Large, 3D ice formations such as icicles exhibit a high degree of geon®idcoptical complexity. Modeling
these features by hand can be a daunting task, so we present a ngselgily-based algorithm for simulating
this phenomenon. Solidification is usually posed as a so-called ‘Stefaleprobut the problem in its classic form
is inappropriate for simulating the ice typically found in a winter scene. We inatsadhe ‘thin-film’ variant of
the Stefan problem to derive velocity equations for a level set simulation.\t¢gvdeie to the scales involved in
the problem, even an adaptive grid level set solver is still insufficient tk titae tip of an icicle. Therefore, we
derive an analytical solution for the icicle tip and use it to correct the leveksatilation. The results appear to
be in agreement with experimental data. We also present a physicagdhlachnique for modeling ripples along
the ice surface that alleviates the need to explicitly track small-scale geormietour knowledge, our approach
is the most complete model available, and produces complex visuaplesa that no previous method has been
able to capture.

Categories and Subject Descript¢ascording to ACM CCS) 1.3.3 [Computer Graphics]:

1. Introduction formations such as frost on surfaces or snowflakes. The tech-
niques described therein assume that the ice crystal is sur-
rounded by a large bath of water, and while an argument can
be made that this is the case in 2D, it is clearly not the case

in 3D. This makes their extension to the complex 3D cases
we present here difficult.

The dense optical and geometric complexity of ice adds ap-
peal and authenticity to any winter scene. Like wind and
fire, ice is considered elemental, so it is useful as a dramatic
tool in visual effects. Large scale ice formations have ap-
peared in recent films such &ke IncredibleandThe Lion,
the Witch and the Wardrobén the former, the icicles were Simulating large scale ice formation is a challenging task
modelled as smooth, stylized cones, and in the latter, they due to the wide range of scales involved. An interesting ice
had to be hand-molded from plaster and clay. In the absence formation is on the scale of roughly 1 meter, but the tip of
of a computational model for solidification, modeling realis- an icicle is roughly 2 millimeters in radius, and a thin water
tic ice formations by hand can be a daunting task. This task film coats the ice that is on the order of tenths of a millime-
becomes even more demanding if an animation of the ice ter in thickness. Surface tension forces in this thin film drive
forming is required, as it is unclear what the dynamics of the the formation of sharp icicle tips, and also cause the forma-
ice surface should be. tion of ripples along the icicle surface. Therefore, in order to
Recent research efforts have found much success in sim_c:onvincingly simulate the formation of Iqrge scale features,
ulating fluids (see e.gSRFO5 and [FOKOS for recent re- features that span fgur orders of magnitude must be accu-
sults), but these algorithms are designed to capture l‘eaturesratEIy resolved_. In this paper, we present a m ethpd that cap-
such as vorticity and splashing. Freezing is instead charac- tgres th.ese various multi-scale phenomena in a single unified
terized by sharp icicle tips, and the optical effects caused simulation.
by surface rippling. The underlying pattern formation mech- Phase transition problems are usually stated S¢efan
anisms are different, so new algorithms are needed. While Problem Usually this problem examines how ice forms in
some recent work has addressed the problem of ice forma- an infinite supply of water. We are instead interested in the
tion [KLO3,KHLO04], it dealt with small-scale, essentially 2D  case where the water supply is severely limited. Therefore,
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we present a ‘thin-film’ version of the Stefan problem and form as the aggregate of discrete droplets is not empirically
design a novel method for solving this problem efficiently.  supported. Kim et al.{L03, KHL04] presented ice forma-
tion algorithms for relatively small-scale 2D growth on 3D
objects. As described earlier, their approaches cannot gener-
ate the structures in this paper.

Features on the ice surface frequently merge, so we have
elected to use level set methods for the overall simula-
tion [OF03Set99. However, even adaptive mesh techniques
such as the octree level set solver irG[F04] cannot pro- In physics and glaciology, there exists some work on the
vide the resolution needed to resolve surface tension forces problem of thin-film ice growth. Several analytical models
that are four orders of magnitude smaller than the overall exist for icicle formation, such a8JMN *94,Mak88 SL94],
domain, so we describe methods of tracking small-scale fea- but these models are concerned with accurately capturing the
tures separately. We derive an analytical solution for the dy- ratio of an icicle’s length to its radius. They are not directly
namics of the icicle tip, as well as a curvature-dependant applicable to visual simulation, as they would merely gener-
evolution equation for the ice far from the tip. In order to ate simple cones and cannot capture surface rippling effects.
avoid explicitly tracking a large amount of ripple geometry, Thin film ice formation is also a topic of interest in mechan-
we modify an analytical model from physics that poses sur- ical engineering, as ice forming on the wing of an aircraft is
face ripples as a Fourier mode along the ice surface. We usea hazardous scenario. The Messinger molikdg53 is the
this method to defer explicit instantiation of the ripple ge- standard method of determining when ice will form, but is
ometry to render time. an energy balance model that is also not directly applicable
to visual simulation. Myers and HammondIiH99] recasted
the problem as a thin film Stefan problem, but only solved
e A level set approach to the thin-film Stefan problem; the 1D case.

e An analytical solution for the tip of an icicle that appears
to be in agreement with experimental data;

e A non-linear, curvature-driven evolution equation for the
ice front far from the icicle tip;

e A physically-based method for simulating surface ripples
that avoids the need to track small scale geometry in the

Our contributions are as follows:

Until very recently, the physics of ripple formation on
crystal surfaces was a poorly understood phenomenon. How-
ever, Ogawa and Furukawa@FO02 recently proposed a
model of ripple formation which was subsequently refined
by Ueno in a pair of articlesyen03 Uen04. The model
from [OF0Z only applies to a cylinder, and Ueno’s model

ir::ilf?:c(i)rs]i’mulation framework for modeling complex ice was derived for an inclined plane. We will later modify
® i g P Ueno's model for our simulation.
dynamics.

We verify the results of our simulation numerically with
experimental data and visually with photographs. We also 3. The Stefan Problem
demonstrate our algorithm on several scenarios, including 3.1. Background
natural 3D icicle formation, an ice sculpture, and a freezing ] S
fountain scene. Our approach is quite efficient, with each !N math and physics, solidification is usually posed as a
step taking an average of 2.5 to 12 seconds and the total Stefan problem. First posed by Josef Stefan as a model

simulation running times ranging between 5 and 30 minutes. ©f 0céan ice forming in arctic regions, the Stefan problem
has since found applications in fields ranging from geology

to metallurgy. The richly non-linear behavior of the prob-
2. Previous Work lem has also attracted considerable interest in mathemat-
ics [Hil87, Mei92]. An excellent historical overview of the

Various forms of phase transition have attracted recent atten- Stefan problem is available iWet01.

tion in computer graphics. Carlson et &&NITO2] and Wei
et al. WLKO3] respectively presented MAC and Lattice- There are only a handful of known closed form solutions
Boltzmann based methods for simulating melting. Subse- to the Stefan problem, and these only apply to simple ge-
guently, Rasmussen et aREN*04] proposed an IMEX ometries. Stefan originally solved the planar case, and sub-
scheme for the viscous forcing terms, and Losasso et al. sequently the case of a spheffed49 and a parabolaya47]
[LIGFO5] described a method of melting Lagrangian solids were derived. These cases are often referred to eponymously
into Eulerian liquids. as the “Frank sphere” and “Ivantsov parabola” solutions. We
will later base some of our thin film equations on these solu-

However, solidification has not been as well examined. To tions

the best of our knowledge, the only work that bears some re-

semblence to ours i&[593]. They described a random-walk Due to its ability to handle geometry with rapidly chang-
model of icicle growth, where water droplets walk along an ing topology, level set methods have found recent success
ice surface and freeze with a certain probability. However, in solving the Stefan problem numerically. The method was
their approach does not naturally handle the formation of firstapplied in BS92. More recently, seconddFCO03 and
more than one icicle. More seriously, the notion that icicles fourth order GF0F approaches were proposed. All of this
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work dealt with the classical Stefan problem. We are instead
interested in applying level set methods to the thin film case,
because it is more appropriate for modeling ice formation in

natural scenes. While our work may at first appear related to

that of [CMK™*01], the ‘thin-film’ referred to in this case is
2D epitaxial growth on a semiconductor wafer, not a thin-
film water supply.

3.2. TheClassic Stefan Problem

The Stefan problem is composed of two simple equations.
Assume we have a heat field defined continuously over

some computational domain, and an initial ice/water inter-
facel’. The heat field evolves according to the heat equation

oT

- 1

3 1)
whereD denotes a diffusion constant. The ice/water inter-
face then evolves in the normal direction according to
or oT
— -n=D— 2
5 n &)
wheren denotes the normal direction. Fluid velocity and the
coefficient of expansion of ice are assumed to be negligi-
ble. Many different flavors of the Stefan problem exist that
impose various boundary conditions on the heat field and in-
terface. We select thene-sidedStefan problem as the most

=DV2T,

formally, we specify this as

T +3(-n)) =Tu. 4

Using this modified boundary condition, we can derive thin-
film evolution equations that can be solved using level set
methods.

The simplest case is an evolving planar interface. In 1D,
Eqn.4 simplifies tol" + & = Tu. The Laplace equation is eas-
ily integrated in this case, and by inserting the result into
Eqn.2, we obtain a constant velocity for the planar case:

dL, Tu—Tf
dt 5

This planar solution matches the one obtainedJeri03.

D

(5)

The cylindrical solution can be obtained in a manner sim-
ilar to the classical solution described iHi[87]. For the
cylindrical case, we must instead solve the polar Laplace
equation,

0’T DoT _,
o2 roor
wherer is the radial coordinate. We assume the crystal is
growing in the positiver direction, and define the current
interface position ag’ within this coordinate system. The
exact method we use to transfoifrto r’ will be discussed
in Section5.2 By applying the two boundary conditions to

(6)

appropriate for our case. In this case the ice/water interface the polar Laplace, we obtain

is assumed to be the freezing temperature of waterand
the temperature of the fluid infinitely far from the interface
is set to some undercooled temperatlirewhereTy < Tz.

L/Tf(logr —logr’). (7)
|Og (r +5>

7

T(r'Y=DT;+D

Both of these assumptions are necessary if the crystal is to
grow. If the temperature at the crystal surface were greater We want a velocity equatlon at, so we take the derivative
thanT;, phase transition would not occur, and if the temper- 0f Eqn.7, solve forr = r’, and substitute the result into Eqgn.

ature of the fluid were not lower tha, then by Eqn2, no 2 to obtain:
growth would occur. or aT(r") Tu—T;
. —-D = . 8
We are dealing with an overall timescale on the order of ot or r'log <r'r4;5> (®)

hours, so we can assume that the heat field is essentially in

equilibrium. Egn.1 then simplifies to the Laplace equation

V2T =0. (3)

This quasi-steady state approximation and the boundary con-

ditions just described are common to all the existing mod-
els from glaciology MMN *94, Mak88, SL94 and physics
[OF02 Uen0g as well.

3.3. TheThin Film Stefan Problem

Unlike the classic Stefan problem, we want to model the
situation where a thin film of water continuously coats the

outside of the ice. We assume that the crystal surface is at

freezing temperatur€, but instead of specifying the under-
cooled temperatur@, at some infinitely far away boundary,
we specify it at a small offsed from the interface. More
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We can obtain a similar solution for the negative curvature
case. This corresponds to the case where the ice freezes ra-
dially inwards to fill in a cylindrical hole. Following steps
similar to those above, we obtain

or Tu—T¢

Eqns.8 and9 can be consolidated into a single velocity equa-
tion,

ar

5o

Tu—Ts

"1og (17

. (10)
'] +3
)

This is the equation that the level set solver solves. We note
this equation implicitly includes Eqrh as well. The planar
case corresponds to the case of a cylinder of infinite radius,
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and in the limit
Tu — Tf

\r'HB) =D

Ir]
the planar velocity equation is retrieved. Therefore, Eqn.
10 describes the interface velocity of cylinder with positive
and negative curvature, as well as a plane. We have not en-
countered this equation elsewhere in the literature, so to our
knowledge, it is novel.

. Tu—T¢
lim D
6 )

(11)
r’'—oo |r/‘ log (

On a high level, Eqnl0induces faster growth in regions
of high curvature. While it would be simpler to only use
the planar solution, we found that this produces unnaturally
sharp corners in the results. The curvature-dependant term
smooths away these corners.

3.4. TheThin Film lvantsov Parabola

In this section we will derive a solution to the thin-film Ste-
fan problem for parabolic geometry. The paraboloid solution
drives icicle growth, so it is crucial that it be solved accu-
rately. From a visual simulation standpoint, correctly cap-
turing the velocity of an icicle tip is important because it
determines the overall shape of the icicle. If the velocity is
too slow, we will get unconvincingly stubby icicles, and if it
is too fast, we will get equally unconvincing needles.

A brute force solution would directly simulate the water
flow along the surface of the icicle, and correctly model the
surface tension forces that give rise to pendant drops, which
in turn form icicle tips. However, the water layer along the
icicle wall is 0.1 mm in thickness, so tracking this feature
inside a 1 metércube would require at least a 1050gxid.
Even with an octree solver, this resolution is intractable.

Fortunately, there is a simple solution. The experimen-
tal measurements ifMMN *94] indicate that across a wide
range environmental conditions, the radius of the tip of an
icicle remains fixed at approximately 2.5 mm. By inserting
this experimental value into an analytical solution for the
growing icicle tip, we can correct the signed distance func-
tion at every timestep. We are able to solve for the dynamics
of the icicle tip independently because the physics only de-
pend on thredocal factors: the curvature, the ice and air
temperatures, and the radius of curvature of the icicle tip.
We have found that by using this method, we can obtain sat-
isfactory results on a much coarser éiﬁid. In practice, we
actually used an octree with a maximum depth of 8, corre-
sponding to at most a 28@rid.

In crystal growth, the Ivantsov parabola solution is often
used to model the growing tip of a dendrite. We conjecture
that icicles are the thin film analogs of classic Stefan problem
dendrites. There are several different methods of obtaining
the Ivantsov parabola solution, but we model our thin-film
derivation after the derivation given i8fi94. Crucial steps,
such as EqrL4, and the dual definition of the Peclet number,
mirror steps from that derivation. Assume that a parabolic

Parabolic Coordinate System

Figure 1: 2D dlice of parabolic coordinate system: Red
lines are parabolas of constaftand blue lines are constant

n. Note how the distance betwen adjacent lines increases far
from the tip.

crystal is growing in the direction with a velocityv. In this
case thez direction corresponds to the direction that points
toward the ground. We define a moving frazie= z— V't

so that at time, Z = 0 always denotes the current position
of the parabola tip. We then define a parabolic coordinate
system

E=r-7
n=r+7
6 = arctar{x/y),

wherer = \/x2+y2+Z72. Intuitively, & andn each define

a paraboloid in space, and their intersection forms a circle.
The@ coordinate then defines a point on this circle. (See Fig.
1

We represent the overall interface as a parabotyid
which is defined as the that contains the current tg. The
Laplace equation in parabolic coordinates becomes

0 oT 1/ 0T
() <15 () =0 a2
and Egn2 simplifies to
oT 1

wherelp denotes the diffusion length. It appears that this
equation no longer describes a velocity, but it is implicit in
thelp term. The thin film boundary conditions can then be
stated ag)’ = Tf andn’ +& = Ty. Due to the parabolic coor-
dinate system, the second boundary condition is only mean-
ingful near the tip. As shown in Fid., the normal distance
between two adjacent values gfincreases as the distance
from the tip increases. Therefore, far from the tip, the dis-
tance between the two will be much greater tldarfrortu-
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symbol| definition value

Tt freezing temperature 0°C

Tu undercooled temperature | —4.9°C

L latent heat of fusion 3.3x10° Jin?

D thermal diffusion constant | 1.3x 10~' m?/s

Cp specific heat 4.2 x 10° JI(Km®)

ho thickness of water layer | 10*m

k wavenumber 600

n solid over liquid thermal| 3.92
conductivities

€ initial ripple amplitude 1x107%m

or ripple amplification rate 52x107%s?t

Vp ripple translational velocity| —6.1 x 107" m/s

Table 1: Symbols and values. Values are frogeh03.

nately, since we are only interested in values near the tip,

far away inaccuracies are irrelevant. Using these boundary Figure 2: Rendering stages. Left toright: 1. Matte shaded

conditions, the parabolic Laplace equation integrates to

N
ne o
_Cp(Tu—Tf) non dl']
T = (14)
fy8e g

whereL is the latent heat, ar@p is the specific heat. Insert-
ing this result into Eqn13, we obtain

’ _n
Cp(Tu=Ti) n' o0 (M+oe b
L T / n dn
n v °°e7% 00 efio
— L eb / —/ dn.
Ip N n+5 N

(15)
By applying exponential integral notatiorE;(P)
F?O%de and a change of variables using the Peclet

numberP = nE, this equation can be rewritten as

m =P (<) <E1(P) ~E (P+ %)) - (16)

Velocity can be solved for by substituting the identRy=
1Y, whereV is the tip velocity andD is the thermal dif-
fusitivity. Like the classic Ivantsov parabola solution, Eqn.
16 is difficult to integrate explicitly, so we solve it numeri-
cally. Similar to the method used in the classic case, we first
approximateE; (P) with its Puiseux series
oo (_1)npn
E1(P) = InP — 17
1(P) =y+ +n; o 17)
wherey is the Euler-Mascheroni constant, and then solve for
V using Newton iteration.

4. A Ripple Formation Model

The equations we have presented so far will produce sharp

icicle tips, and smooth features far from the tip. However,

(© The Eurographics Association 2006.

level set results. 2. Ray traced level set results. Note the un-
natural smoothness of the surface. 3. Recorded arrival times.
Whiter regions denote later arrival times. Note how the time
increases near the tip. 4. Ray traced results obtained by in-
serting the arrival times into the Ueno model. Note the un-
natural uniformity of the ripples. 5. Final render using ve-
locity and amplitude perturbation.

other non-smooth features occur in ice formations. This is
most visible as ripples along the surface of an icicle. In this
section, we present a method of simulating these features.

Until recently, the formation of these features was poorly
understood. Pattern formation of this type is usually ex-
plained in terms of Mullins-Sekerka theor§64], but
Mullins-Sekerka theory predicts the formation of patterns at
many wavelengths, whereas experiments show that ice rip-
ples only form at a wavelength of roughly 1 cm. Recently,
[Uen03 showed that one of the elements of Mullins-Sekerka
theory, the Gibbs-Thomson effect, does not apply in the case
of ice ripple formation, and proposed an alternate model that
is in excellent agreement with experimental data.

The Ueno model can be stated in one dimension as
(18)

wherex andt are spatial and temporal coordinatess the
amplitude of the initial ripplek is a wavenumbemg; is an
amplification rate, andyp is a translational velocity. Intu-
itively, we can think of Eqnl8 as a sine wave being trans-
ported along the ice surface, which amplifies in time by a
factoror and climbs up the length of the icicle with a veloc-
ity vp. The representation is attractive because it allows us
to track just a single ‘creation time’ scalar during the simu-
lation, and leave the instantiation of ripple geometry to the
renderer.

u(x,t) = ee”" sin(k(x— vpt)),

If we use Eqna8 directly in our simulation, we will ob-
tain unnaturally symmetric ripples, as can been seen in the
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second to last image of Fi@. This is because in the Ueno  curvatureH. The maximum curvature is then the larger root
model, the translational velocityp is assumed to be con- K of the quadratm(2 —2HK+K = 0 (see Fet990OF03 for
stant. A brute force method of introducing more visual vari- details). Thisk describes the largest osculating cylinder at
ety would be to take the derivative of EdtB and integrate that point, so we plug this value intd from Eqn.10. The

it at every grid point, at every timestep. This would impose resultant radial velocity is then dotted against the normal di-
a small timestep restriction on the simulation, and since we rection, giving us the final velocity at that grid point.

are dealing with timescales on the order of hours, we would

. : L Eqgn.10is onl fin long the interface, wher we re-
like to avoid such a restriction. qn.10is only defined along the interface ereaswere

quire velocities over the entire narrow band. Since curvature
Instead, we observe that thig variable can be interpreted  is defined over the entire domain, we use it to compute val-

as the average translational velocity of the interface over ues for Eqnl0everywhere. This approach does not seem to

the lifetime of the ripple. Various environmental conditions distort the distance field much, so it works well in practice.

cause this average velocity to fluctuate over time, so we can

imitate this physical noise usin_g numerical r_10ise._ We elect 5.3. Inserting the I cicle Tips

to use an easily controlled Perlin noise function with a 1 cm

wavelength. At render time, each vertex does a lookup into In section3.4, we derived the velocity of a parabolic icicle

a 3D Perlin noise function and uses it to jitigr: The result  tip, with the goal of tracking these small scale paraboloids

of this simple perturbation can be seen in the final image Separate from the level sets and using them to correct the

of Figure 2. In addition to avoiding a timestep restriction, ~ signed distance function. We now show how to perform this

this approach decouples the small scale detail almost entirely correction. The equation for a translating paraboloid point-

from the level set simulation. When designing ice patterns, ing in the negative direction is

the small scale ripple details can then be tweaked without 2y
having to rerun the simulation. z(x,y) = R + R —Vit, (20)
5. A Level Set Solver whereRis the radius of curvatur¥, is velocity, and is time.

In this case we use the radius of curvature of the icicle tip,
which has been experimentally observed to be roughly 2.5
We will now describe how to solve the equations from the mm under a wide variety of conditions. We assume that the

5.1. Background

previous sections using level set metho@03 Set99. paraboloid is circularly symmetric, so we can instead solve
Level set methods can simulate interfaces with rapidly the 2D case

changing topology by embedding the interface as an iso- NG

surface in a higher-dimensional function, which is usually ZX) = 55—Vt (21)

a signed distance functiop The function is then evolved
according to the equation

g—(tp+v-v(p:0, (29) , 2 2

wherev is some velocity field. Because the ice interface of- 5= (p=x)"+ (pz <2R Vt)) ’ (22)
ten merges, we have decided to use level set methods in this
work. We specifically use the narrow band level set method
[AS95, where the narrow band is tracked using an unbal-
anced octree, much as ihGF04. We use fifth order HJ-
WENO for the spatial derivatives and second order TVD RK ds _ —2(px—X) — gx(p Vi L) (23)
for timestepping (seeJF0J for details). A hybrid particle dx R 2R”
level set methodEFFMO02 has recently been successful in - we find the roots of this equation numerically. The second
simulating the Navier-Stokes equations because it uses La- derivative ofSis very flat around the roots of interest, mak-
grangian partiCles to re-introduce smeared out small scale |ng Newton_Raphson a poor choice for a solver. Fortunate|y,
detail. In our case, we have captured the small scale detail e can obtain fairly tight bounds on the location of the root,
using alternate methods, so a basic level set solver suffices. making bisection method viable. Since a parabola is sym-

. . metric about they axis, we can solve for the value of the
5.2. The Velocity Field root over the positivexc domain (excluding« = 0) without
In order to evolve an existing ice interface, we must specify a loss of generality. Over this half space, EQR can only
velocity v. At each grid point, we choose to approximate the have one root, corresponding to the point of minimum dis-
interface as locally cylindrical, and use Edidto compute tance. If the point fx, py) is outside the parabola, then the
the velocity in the normal direction. In order to do this, we root is guaranteed to be in the interval px]. If the point is
first compute the maximum principal curvature at each grid inside the parabola, the root is guaranteed to be in the inter-
point by computing the Gaussian curvatt@nd the mean val (0, y/2R(py +V1)], Using these bounds, we have found

The squared distance from any point in spgge pz) to any
point on this parabola is then defined as

whereSis the squared distance. If we want to then find the
minimum distance to the parabola, we must find the zeros of
the derivative ofS,

2
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that bisection method only requires a handful of iterations to
converge.

With this method, we can correct the signed distance field
of the level set solver. At every timestep, given the current
position of a paraboloid, we compute the exact distance field
values for a 4 neighborhood around the tip and overwrite
the values in the level set distance field. Cases where the

tip runs into an obstacle such as the ground can be handled.

by simply deleting the parabola and letting curvature-driven
growth take over.

5.4. Trackingthe Ripples

The last component of the level set solver is a ripple tracking
method. In sectiod, we described the ripples as a translat-

ing sine wave. We couple the ripple formation equation, Eqn.
18, to the level set solver using the time variahle

The variable in Eqn.18represents the length of time that
a ripple has existed, not the overall time that the simulation
has been running. In order to obtain thjsve need to track
the creation time of each ripple. Since the icicle tips are the
fastest moving features in the simulation, whenever the icicle
tip solution is used to correct the signed distance function,
we set the creation time in those grid cells to the current
time. The initial ice front at the beginning of the simulation
is given a creation time df= 0.

We encounter the same problem when tracking the cre-
ation times that we did with the velocities; they are only de-
fined along the interface. But, we need a method of ensuring
that as the interface moves, the creation time moves with it.
To accomplish this, we apply the method of fast extension
velocities described ir4S99. Instead of extending a veloc-
ity off of the front, we extend the creation time. An example
of these tracked arrival times is shown in the middle image
of Figure2.

6. Rendering

We interface the level set solver with a renderer by perform-
ing marching cubes on the distance field, and sending the tri-
angles to 3Delight, a RenderMan implementation. The cre-
ation time information is interpolated per vertex and sent to
the renderer as well. A displacement shader then computes
Eqn.18, applies noise to the interface velocity, and generates
the ripple geometry on a per pixel basis.

Ice presents a challenging rendering scenerio because re-

fraction, reflection, and multiple scattering make up the bulk
of the visual detail. The reflection and refraction components
can be dealt with by using the two layer wetness model de-
scribed in pLD99.

Accounting for the multiple scattering effects is more dif-
ficult. An obvious choice is to use the dipole approximation
from [JMLHO1], but this model is not well suited to ice. The

(© The Eurographics Association 2006.
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model assumes that the scattering medium is fairly homo-
geneous, but in the case of ice, the medium varies contin-
uously from transparent at the surface to highly scattering
at the core. It appears that even the recent workDd0g
cannot be applied, since it handles multiple discrete scat-
tering layers, but not a continuum. Additionally, the dipole
model approximates the surface as a semi-infinite plane, and
this assumption breaks down at the sharp icicle tips. Solv-
ing these issues rigorously is beyond the scope of this pa-
per. Instead, we will describe a method that provides reason-
able visual results. Near the root of the icicle, the medium is
sufficiently thick and the curvature sufficiently flat that the
dipole approximation gives visually plausible values. Near
the tips, the dipole approximation returns unnaturally dark
values. Fortunately, we know that thin features usually de-
note newly created ice, which is nearly transparent. So, in
addition to using the dipole approximation to render the ice,
we also use it as a blending factor between the multiple scat-
tering color and the purely refracted ray color.

7. Resultsand Validation

We have used our algorithm to simulate ice formation in sev-
eral scenes, and also validated portions of our model against
experimental data. The code was compiled using Intel Com-
piler 8, and the timings were obtained on a 3 GHz Pentium 4.
All simulations take place on an bounded, unbalanced octree
with maximum depth of 8, corresponding to a virtual 356
grid.

In Figure5 we simulated ice forming on a fountain. The
fountain was left running during a cold day, and the over-
flowing water froze into ice. The simulation averaged 12 sec-
onds a timestep and completed in 30 minutes. In Figuve
simulated ice forming under a roof top. The simulation av-
eraged 2.5 seconds a timestep and completed in 5 minutes.

In order to demonstrate the flexibility of our model,
we simulated the ‘icicle star’ sculpture by internationally
renowned artist Andy GoldsworthyGpl9( in Fig. 4. Mr.
Goldsworthy constructs sculptures from natural materials, in
this case icicles. The formation of the icicle star could not
occur naturally, because gravity forces a downwards water
flow. However, our model implicitly allows water to flow in
any direction by simply re-orienting the parabolic tips. For
an animation of our ‘zero-gravity’ icicle-star growing, please
see the supplementary video. The simulation averaged 5.1
seconds per timestep and was completed in 18 minutes.

We have not found Eqrl6 elsewhere in the literature,
So to test its validity we have compared it against experi-
mental data. There is a limited amount of data available on
the 3D ice growth, butNjIMN *94] provides experimental
data on icicle tip velocities under a range of undercoolings.
In order to make a comparison to their data, we must se-
lect appropriate values fay’ andd. Then’ value can be
interpreted as the radius of curvature of the icicle tip. As
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(10° Measured and Predicted Tip Velocities know of no algorithm that can efficiently render the heav-
7 T T T T T T T T . . . . .
S Experimental Values ily inhomogeneous scattering medium that ice represents, so
o —— Thin Film Model

or —&— ClassicModel || this also presents an interesting future work direction.

On the physics side, while Mullins-Sekerka theory pre-
dicts the formation of dendrites in an infinite bath, there is no
equivalent theory for the thin film case. Such a theory would
predict the locations of icicle initiation, allowing the simula-
tion to automatically place the parabolic tips. Lastly, due to
the similarly between the heat and mass transfer equations,
[ S recent results§BB* 05] also suggest that methods similar to
the ones we present here could simulate stalactite formation.

tip velocity (m/s)

-22 -20 -18 -16 -14 -12 -1
Undercooling (Celsius)
Figure 3: Experimental validation: Our thin film model
passes through the center of the data set, while the classic
Ivantsov solution predicts much slower growth rates than
those measured. The authors would like to thank the 3Delight team for their
rendering support, in particular Olivier Paquet and Aghiles

. . ) . Kheffache for expediently answering our many questions
stated earlier, experiments show that this value is 2.5 mm. 54 generously providing an additional license. Addition-

The value of on the icicle surface is usually on the order  gjly, we would also like to thank the anonymous review-
of 1x 10~* m, but this value represents the water thickness ers for their suggestions. This work was supported in part
along the icicle wall, not at the tip. At the tip, a pendantdrop by Army Research Office, Defense Advanced Research
forms that is roughly the same radius as the underlying crys- Projects Agency, Intel Corporation, National Science Foun-
tal. Therefore, we estimate the valuedddt the tip to be 2.5 dation, Office of Naval Research, and RDECOM.

mm as well. Fig.7 shows how our predicted values com-
pare to experimental data. We compute tip velocities over a
variety of undercoolings, and compare our results to those
of the classic Ivantsov relation. As stipulated by E@nas

the undercooling increases, the growth rate must increase ag
well. The classic solution predicts much slower growth and
consistently undershoots the data. This is to be expected, be
cause in the classic case, the temperature gradient at the tig
has been ‘stretched’ by the infinitely far away boundary con- i
dition. While this experimental data set appears to be quite |E—— — : QRPN .
noisy, our solution appears to be in fair agreement, and we e

have found that it generates visually convincing results as
well.

Acknowledgements

8. Summary and Future Work

We have presented an efficient physically based method for
simulating 3D ice formations that are typically found in win-
ter scenes. The model is, to our knowledge, the most com-
plete approach currently available.

The most natural direction for future work is the integra- E5ae=®
tion of our model with melting and combustion simulations,
creating a unified approach that can visually capture all three
common states of matter and all the phase transitions in-
between. This would also allow, for example, the droplets
from the icicle tips to be simulated. The effects of an explicit
flow simulation can be incorporated into the current ice sim-
ulation by allowing thed and Ty variables to vary locally
according to the flow. However, correctly resolving all these
factors introduces some very challenging scale disparities in
both space and time.

Figure 4: Icicle Star: Inspired by an Andy
Goldsworthy  sculpture  Gol90, we  simulated
the growth of an icicle star. See for example
wwwgac culturegovuk/gagmagegFullsize/16622A. jpg

for the original photograph. Goldsworthy is an artist who
constructs sculpture from natural materials, in this case
icicles. While this formation cannot occur in nature, our
user controls allow such a ‘zero gravity’ star to be grown.
The simulation completed in 18 minutes.

As previously mentioned, from a rendering standpoint, we

(© The Eurographics Association 2006.
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Figure5: A freezing fountain: Ice forms in a fountain one morning when the temperature dips below fre@4irggsimulation

completed in 30 minutes.
Figure 6: Ice forming on a roof: Icicles form from the snow melt running off down a roof. This simulationpteted in 5

minutes.




